

Background

- Biological assays are designed to estimate the bioactivity of a test preparation against a standard preparation.
- A series of bioassay runs may be performed to improve the precision of the bioactivity.
- Several methods are available for estimating a relative bioactivity for parallel line bioassays.
- Little attention has been paid on these methods in the last few decades and more attention shifted towards meta-analysis.
- Socus on parallel line bioassays.

Suppose H bioassay runs with I=2 preparations are considered. The statistical model is as follows:

$$y_{hijk} = \alpha_{hi} + \beta_h x_{hij} + \varepsilon_{hijk} \tag{1}$$

The relative bioactivity is estimated as:

$$\hat{\mu}_{h} = \frac{\hat{\alpha}_{h2} - \hat{\alpha}_{h1}}{\hat{\beta}_{h}} \quad \text{or simply} \quad \hat{\mu}_{h} = \frac{\hat{\alpha}_{\tau} - \hat{\alpha}_{S}}{\hat{\beta}} \tag{2}$$

The combined relative bioactivity is estimated as:

$$\hat{\mu} = \frac{\sum \hat{\omega}_h \hat{\mu}_h}{\sum \hat{\omega}_h} \tag{3}$$

and its confidence interval is given as : $\hat{\mu}_{l}, \hat{\mu}_{u} = \hat{\mu} \pm t_{df_{c}} \cdot \hat{\sigma}_{\hat{\mu}}$

Simulation results: Width of the confidence intervals									In
Table: Wig	dth of the QE% or	onfidonco i	ntonvolo	for moth	odc with	rood c	0.4042.50		
probabilities									
	No. of bioassays	Ordinary	Bliss	Cochran	Morse	RE [*]			
	H=2	1.543	1.252	1.272	0.763	-			
	H=3	0.478	0.434	0.436	0.359	-			
	H=4	0.317	0.299	0.300	0.266	0.430			
	H=5	0.253	0.244	0.245	0.224	0.310			
	H=6	0.216	0.211	0.211	0.196	0.243			
	* Random effects mode	el .							
				< 1	□ >	(三)(三)	e) e	200	

In progress ...

1 [

- Currently the weighted average methods outperform other statistical methods.
- Random effects model using a weighted variance (Hardy & Thompson, 1996 and Sachez-Meca & Marin-Martinez, 2008).
- Preliminary tests are based on α = 0.05, a less restrictive level might improve results (Bancroft, 1964).

Thank you for your attention!

