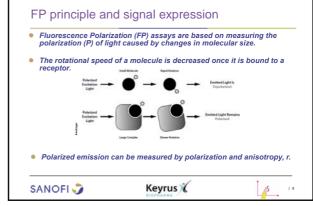
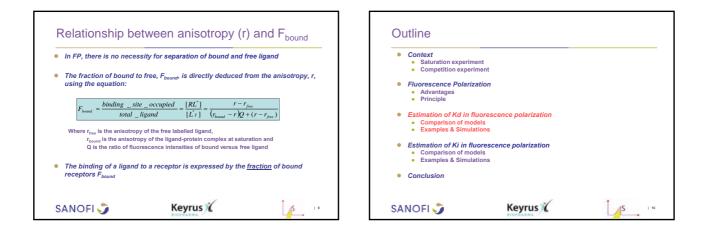
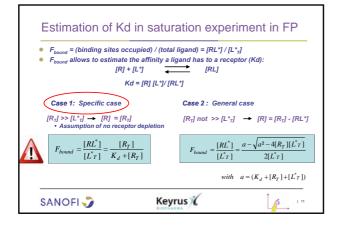
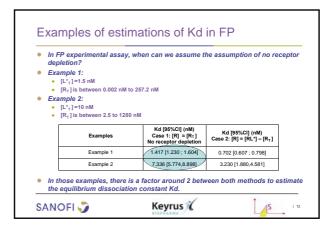
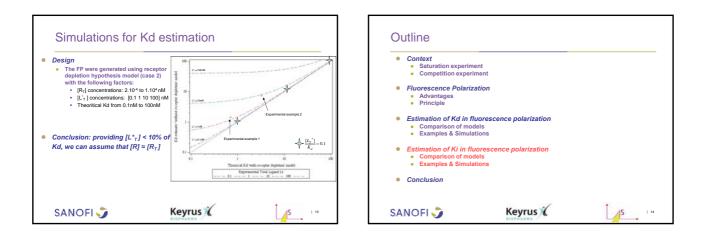

Dorothee Tamarelle (Keyrus Biopharma) Véronique Onado (Sanofi)	
• • • • • • • • • • • • • • • • • • •	Conclusion
	 Estimation of Ki in fluorescence polarization Comparison of models Examples & Simulations
	Estimation of Kd in fluorescence polarization Comparison of models Examples & Simulations
polarization?	Principle
	Advantages
d Ki in fluorescence	Fluorescence Polarization
method to estimate Kd	Competition experiment
	Context Saturation experiment
	Contant
	Outline
	method to estimate Kd d Ki in fluorescence polarization? thodology and Examples Armel Salangros (Freelance contractor) Dorothée Tamarelle (Keyrus Biopharma) Véronique Onado (Sanofi)

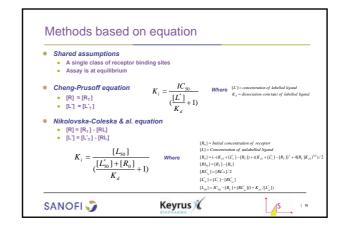

	used to measures the amount of binding or affinity cules. There are numerous types of ligand binding
 Widely applied in 	life science
Examples	
 Targeting prote 	n-protein interactions
cancer, and cells. Select	in interaction (PPI) can contribute to many diseases, including plays a key role in maintaining the malignant phenotype in tumo re, small-molecule modulation of PPIs is therefore an area of armaceutical science.
• Two basic steps:	saturation and competition experiments
SANOFI 🎝	Keyrus 🕻

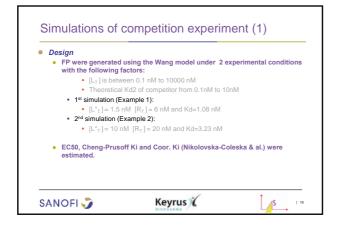


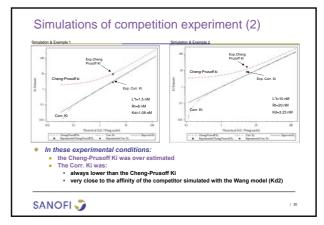


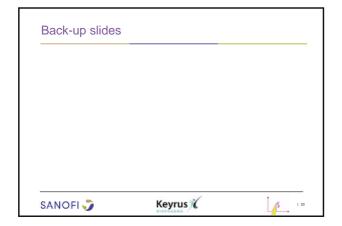


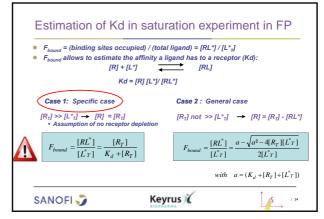


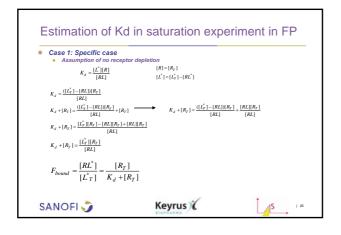


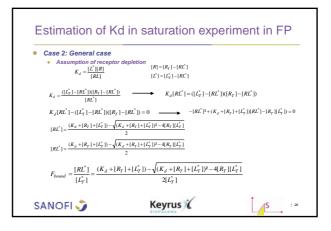



•	The affinity of the competitor, unlabelled ligand $[L]$, for the receptor $[R]$ can be indirectly determined by measuring its ability to compete with, and thus inhibit, the binding of a labelled ligand $[L^{+}]$ to its receptor $[R] + [L^{+}] \longrightarrow [RL^{+}]$
	$ \begin{array}{c} [R]+[L] & \longrightarrow & [RL] \\ [RL]+[L^*] & \longrightarrow & [RL^*]+[L] \end{array} $
	from different methods: Estimation of constant of inhibition (Ki) The Cheng-Prusoff equation The Nikolovska-Coleska & all equation Direct estimation of the affinity of the competitor (Kd2)

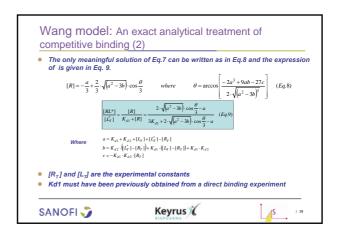

 Wang has described an 	exact expression of co	mpetitive binding:
$\begin{split} R+L^* &\longleftarrow R+L &\longleftarrow \\ R_{d1} = \frac{[R]\cdot[L^*]}{[RL^*]}(Eq.1) \qquad K_{d2} = \frac{[R]\cdot}{[R]} \end{split}$		$\label{eq:relation} \begin{split} [R_{T}] = [RL^{*}] + [RL] + [R] \\ \text{ion of mass requires:} & [L_{T}^{*}] = [RL^{*}] + [L^{*}] \\ & [L_{T}] = [RL] + [L] & (Eq. \end{split}$
After substitution and i	rearrangement, this lead	s to the following equation:
$F_{board} = \frac{[RL^{*}]}{[L_{T}^{*}]} = \frac{2 \cdot \sqrt{[a^{2}]}}{3K_{d1} + 2 \cdot \sqrt{[a]}}$	$\overline{b} \cdot \cos \frac{\theta}{3} - a$ $\overline{b} \cdot \cos \frac{\theta}{3} - a$ When	$ \begin{aligned} & a = K_{x_1} + K_{x_2} + [L_T] + [L_T^*] - [R_T] \\ & b = K_{x_2} \cdot ([L_T^*] - [R_T]) + K_{x_1} \cdot ([L_T] - [R_T]) + K_{x_1} \cdot K \\ & c = -K_{x_1} \cdot K_{x_2} \cdot [R_T] \end{aligned} $
 [R_T] and [L_T] are the ex Kd1 must have been pr 		a direct binding experiment


:	mple 1: $[L_{T}^{*}] = 1.5 \text{ nM} \text{ and } [R_{T}] = 1.5 \text{ nM}$ $[L_{T}] \text{ is between 0.51 nM}$ Kd = 1.08 nM and IC50 = 1.08 nM	l to 10000 nM	nM	
:	mple 2: [L* _T] = 10.0 nM and [R _T] [L _T] is between 0.67 to Kd = 3.23 nM and IC50	238 nM	n M	
[Experiment	Ki Cheng Prusoff	Corrected Ki Nikolovska-Coleska & al.	Kd2 Wang model
	Example 1	9.35	2.81	3.14 [2.395 ; 3.888]
	Example 2	16.62	7.33	5.34 [3.896 ; 6.778]





Conclusion			References		
Which method to estim			framework for develop screens for small-mole	Julia Y WANG, Gerhard WAGN ment and data analysis of comp cule inhibitors of protein-protein on.", <i>Biochemistry</i> , 2004, 43 (51	etitive high-throughpu interactions by
 The classical model, [R] = [R₁], is not well adapted: over estimation of Kd The general model, taken into account the receptor depletion [R] = [R₁] – [RL⁺], must be used in FP experiments Which method to estimate Ki in FP? Ki calculated with Cheng-Prusoff bialsed the affinity of a competitor for a receptor The Nikolovska-Coleska equation (corr. Ki) and the exact analytical treatment of competitive binding (Wang model) are equivalent methods: Advantage of Wang model : 95% confidence interval is estimated Advantage of Corr. Ki : equation for uncompetitive inhibition is available Both methods: difficult to generalize in particular cases as dimeric models 		npetitor for a receptor lightcal treatment of competitive nated is available	 Zhi-Xin WANG. "An exact mathematical expression for describing competitive-binding of 2 different ligands to a protein molecule.", <i>FEBS Letters</i>, 1995, 360, 111-114. Zaneta NIKOLOVSKA-COLESKA and al. "Development and optimization o a binding assay for the XIAP BIR3 domain using fluorescence polarization." <i>Anal. Biochem.</i>, 2004, 332, 261-273. Xinyi HUANG. "Fluorescence polarization competition assay: the range of resolvable inhibitor potency is limited by the affinity of the fluorescent ligand.", <i>J Biomol Screen</i>, 2003, 8, 34-38. 		
SANOFI 🎝	Kevrus	1 45 1 21	SANOFI 🎝	Kevrus	1.05



Wang h	as described a	n exact express	ion of comp	etitive binding	y:
N I L	$L \rightarrow RL^{*}$ $R + L \leftarrow$ $[L^{*}]$ $[Eq.1)$ $K_{d2} = [I$, 112	Conservation	of mass requires:	$ \begin{split} [R_{T}] = [RL^{*}] + [RL] \\ [L_{T}^{*}] = [RL^{*}] + [L^{*}] \\ [L_{T}] = [RL] + [L] \end{split} $
 Express concent 	sing [RL*] and trations (L _τ) yie	[RL] as function eld Eq.4 and 5	of total liga	nd (L_{τ}^{*}) and to	otal competitor
	⇒	$RL^{*} = \frac{[R] \cdot [L_{T}^{*}]}{K_{d1} + [R]}$	(Eq. 4) RL =	$\frac{[R] \cdot [L_T]}{K_{d2} + [R]}$ (Eq. 5)	
 Substituction correspondent 	ution of Eq.4 a onds to the cu	nd 5 in Eq. 3, yie bic Eq. 7	elds Eq. 6, w	hich after rear	rangement
	$[R_T] = \frac{[R] \cdot [L_T^*]}{K_{d1} + [R]} + \frac{[R_T] \cdot [L_T^*]}{K_{d1}} + \frac{[R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T] \cdot [R_T]}{K_{d1}} + \frac{[R_T] \cdot [R_T]}{K_{d1}} + [R_T] \cdot$	$\frac{R] \cdot [L_T]}{d_2 + [R]} + [R]$ (Eq.6)			
	$[R]^3 + a[R]^3$	$^{2} + b[R] + c = 0$ (Eq.7)	Where	$\begin{split} a &= K_{d1} + K_{d2} + [L_T] \\ b &= K_{d2} \cdot \left([L_T^*] - [R_T] \right) \\ c &= -K_{d1} \cdot K_{d2} \cdot [R_T] \end{split}$	+ $[L_T^*] - [R_T]$ + $K_{d1} \cdot ([L_T] - [R_T]) + K_{d1}$

