

Background Ligand binding assays for analyte quantification of biomarkers Use of a calibration curve to estimate the response of interest e.g concentration of an analyte Examples :IL5 protein, glucose, histamine Bayesian approach Incorporates all uncertainty Focus on concentrations below the 'lower level of quantification'

Note:

- See FDA recommendations on assay validation, etc
- LLoQ is the lowest std concentration which meets set criteria on accuracy and precision
- Precision based on CV of the unlogged back calculation std concentration data
 accuracy based on the estimated back-calculated std concentration over the true std concentration
- Values below level of LLoQ set to LLoQ/2

Modelling

Typically something like a 4 parameter logistic model:

$$E(y | x, \beta) = g(x, \beta) = \beta_1 + \frac{\beta_2}{1 + (x/\beta_3)^{-\beta_4}},$$

- Assume y Gaussian
- Sensible to make beta random effects eg to allow plate effects

May allow variance to depend on E(y|x,beta)

Bayesian approach

- Above models P(signal | concentration)
- Applying Bayes rule,
- P(concentration | signal) = P(signal | concentration).P(concentration) / P(signal)
 Specifying a prior for concentration allows inference about concentration conditional on signal
- If model is correct, this properly reflects uncertainty about concentration

 No need to discard/adjust data below LLQ/LLD
- Inference (eg on treatment effects) can be done within the same model and allows for uncertainty about concentration
- Not new: see eg Gelman et al, Biometrics 2004
- Doesn't seem to be much applied in practice
- Here show some examples

Priors

'Default' weakly informative priors on regression parameters/variance components

- For experimental concentrations:

- conc.exp[i] ~ dlnorm(mu, tau)
- 'Default' weakly informative priors on mu, tau
- Typically mu will be a linear predictor incorporating parameters which are objects of inference

Computation: WinBUGs

model{	
for (i in 1:m.stand){	
signal.standjij ~ dnorm(mu.standjij, tau.e) mu standjij <- diplate standjij + alplate standjij / (1 +	
pow(conc.stand[i] / c[plate.stand[i]],-b[plate.stand[i]]))	
}	
for (i in 1:m.exp){	
signal.exp[i] ~ dnorm(mu.exp[i], tau.e)	
mu.exp[i] <- d[plate.exp[i]] + a[plate.exp[i]] / (1 + pow(conc.exp[i] /	
conc.exp[i],~d[norm(mu.prior, tau.prior)	
# conc.exp[i] ~ dunif(0,500)	
}	

Discussion

Check modelling assumptions
 Bayes approach works well
 Care with starting values

Allows easy extension
 Replace N() with t() to robustify
 Model mean-variance relationships

- Etc

- WinBUGs adequate, other approaches may be faster

Challenge persuading colleagues to use this approach?

Ethics

"The human biological samples were sourced ethically and their research use was in accord with the terms of the informed consents"

Fit to experimental (study 2)

LLQ/LLD are often unnecessarily conservative and may discard valuable data

