A novel method to estimate the minimum effective dose for monotone and non-monotone dose-response relationships

Martin J. Wolfsegger¹, Georg Gutjahr², Werner Engl¹ and Thomas Jaki³

¹Baxter Innovations GmbH, Vienna, Austria
²Competence Center for Clinical Trials, University of Bremen
³Department of Mathematics and Statistics, Lancaster University

NCS Conference
September 26, 2012

Introduction

• Minimum effective dose (MED): smallest dose producing a clinically important response that can be declared statistically significant different from zero dose

• Minimum detectable dose (MDD): smallest dose statistically significant different from zero dose

• Estimation can be performed by modeling approach or multiple comparison procedures

Outline

1 Introduction
2 Model
3 Procedure
4 Simulations
5 Discussion and Conclusion

Multiple comparison procedures:

• Performance of methods depends on the underlying - a-priori unknown - dose-response shape

• Assumptions about the dose response shape often difficult to elicit and hard to justify
Assumptions

Set of increasing dose levels $i = 0, 1, 2, \ldots, k$ with a-priori unknown monotone or unimodal dose-response relationship, where the j-th observation in the i-th group is distributed according to

$$X_{ij} = \mu_i + \varepsilon_{ij} \quad i = 0, 1, \ldots, k \text{ and } j = 1, 2, \ldots, n,$$

where ε_{ij} are i.i.d. normally distributed with zero mean and a common σ^2.

Control of the type I error

Control of the error rate for underestimating the true MED

$$P(M < m) \leq \alpha$$

Under weak monotonicity the FWE is also controlled if the error rate of underestimating the true MED is controlled.

Minimum effective dose

Let m denote the minimal effective dose so that

$$m = \min \{ i : \mu_i > \Delta + \mu_0 \},$$

for some threshold $\Delta > 0$, and let M denote the smallest dose that is rejected by a hypothesis testing approach.

Procedure

1. Perform all k one-sided comparisons with the zero dose and use single step Dunnett’s procedure to adjust for multiplicity.
 - If no dose can be declared significantly superior to the zero dose, then no dose level is declared as MDD and the procedure stops.
 - If one or more test statistics exceed Dunnett’s critical value, let ℓ denote the largest index of such test statistic.
2. Perform the following sequential procedure.
 - Set $\ell = \ell - 1$.
 - If $\ell > 0$ and if an unadjusted one-sided two-sample t-test rejects $\mu_0 \geq \mu_\ell$, then go to (2a).
 - Otherwise, go to (3).
3. Set the minimal identified effective dose M to $\ell + 1$.
Procedure

It can be shown that the error rate of underestimating the true MED is controlled strongly for monotone or unimodal shapes.

Proposition

\[P(M < m) \leq \alpha \text{ for monotone or unimodal shapes} \]

Simulations

- Simulation study for 30 scenarios based on 1E6 runs
- Data generated to follow a normal distribution with \(n_i = 10 \) for \(k = 5 \) positive dose levels with \(\sigma = \sqrt{n} \)
- Introduced approach (SD3PC) compared with
 - Step-down version of Dunnett’s procedure (SD1PC)
 - Step-down application of two-sample t-tests (SD2PC)
Discussion and Conclusion

- Novel method combines the advantages of two other methods
- Not applicable to multi-modal dose-response relationships
- Controls the probability in underestimating the true MED
- Best or almost always close second in terms of power
- Advantage to interpret the results from a clinical point of view