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INTRODUCTION

 Inhibition of viral replication with direct acting 
antiviral agents can result in selection of viral 
variants.

 Difficulty: viral strains become ‘smart’ and mutate.
 Creates resistance
 High doses of antiviral agents needed

 Patients can have both a mutant strain and a wild 
type.
 In combination, does the dose response curve change?
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QUESTION?

Can we predict the exposure-response for a combination
of wild type and mutant virus types, based on the 
individual exposure response curves?
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IN-VITRO VIRAL COMBINATIONS
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STUDY DESIGN

 Experiment design 
 The effect of drug exposure is tested in-vitro after

48hrs incubation.

 Partitions were ranging such that:
 100% wild type: 0% mutant strain

.

.

.
 0% wild type : 100% mutant strain

 Four wells each containing combinations of wild 
type and mutant viral strains. 6

METHODOLOGY

 Statistical model per viral strain:

 Estimate the combinatory wells as a mixture of the 
individual profiles: 
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METHODOLOGY

Set of combinations; one function to fit it.

 Monotone increasing function constrained between 
0 and 1.
Mimic the extremes 100%: 0%

 Flexibility for the points within.

CDF of a Beta Distribution

 Re-parametrized based on Ferrari Cribari-Neto
the estimators of the proportions are changed such 

that:
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FINAL MODEL FITS
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•Model fit at the ‘edges’ of the viral strains.

•Wild type appears completely suppressed at  lower 
concentrations than the mutant type.

•Quantification Limit is at log10 (Viral Load)=1

100% Wild Type with 95% C.I 100% Mutant with 95% C.I

MODEL RESULTS
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10% wild type: 90% mutant50% wild type : 50% mutant
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MODEL RESULTS

Wild Type Mutant Type
Effect Parameter Estimate 95% C.I Estimate 95% C.I.

Initial Estimate E0 2.47 2.41; 2.53 2.24 2.11; 2.37

Hill coefficient ηj 1.45 1.23; 1.68 2.74 2.36; 3.12

½ Max effective 

conc.

Log10

EC50
-2.54 -2.60; -2.49 0.92 0.89; 0.95

Max. estimate Em 24.49 21.99; 26.97 7.91 5.59; 10.23

Growth factor µ 0.18 0.16; 0.21 0.20 0.19; 0.21

Sigma σ 0.16 0.17; 0.15 0.16 0.17; 0.15
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Table 1: Parameter Estimates from the Final Model

SIMULATION FOR OPTIMIZATION

Replica of the study design

 Scenario mimics experiment with different setting
 Scenario: 6 partitionings and 6 concentration profiles

 Approximately 1970 data sets or studies analyzed. 

 Goal: how close do we come to the model’s EC50 i.e. the 
theoretical EC50?
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SIMULATION RESULTS
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OTHER APPLICATIONS

Patients may carry one or both strains of the 
virus.

Possible to not only carry this out but also to 
find the estimates of the growth rates for a 
patients using the same model.

Scenario
 Blood sample taken and ex-vivo the dose response.
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OTHER APPLICATIONS
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CONCLUSION

Modeling combinatory experiments gives insight 
to growth rates when both mutant and wild type 
strains are present.
 Possible to see at which concentrations when in 

combinations that viral suppression is achieved.

Close to theoretical or model EC50 when 
experiment is optimized.

Model useful in patient information.
 Able to tell at which concentrations suppression is 

achieved regardless of the viral strains present.
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THANK YOU.
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