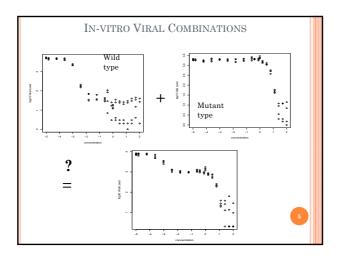


INTRODUCTION

- Inhibition of viral replication with direct acting antiviral agents can result in selection of viral variants.
- ${\color{red} \circ}$ Difficulty: viral strains become 'smart' and mutate.
 - Creates resistance
 - High doses of antiviral agents needed
- Patients can have both a mutant strain and a wild type.
 - In combination, does the dose response curve change?

QUESTION?

Can we predict the exposure-response for a combination of wild type and mutant virus types, based on the individual exposure response curves?



STUDY DESIGN

- o Experiment design
 - The effect of drug exposure is tested in-vitro after 48hrs incubation.
 - Partitions were ranging such that:
 - o 100% wild type: 0% mutant strain

.

- ${\color{red} \circ}$ 0% wild type : 100% mutant strain
- Four wells each containing combinations of wild type and mutant viral strains.

METHODOLOGY

• Statistical model per viral strain:

$$\begin{split} Y_{ij} &\sim LN\left(\mu_{ij}, \sigma^2\right) \\ \mu_{ij} &= E_{0j} \left(1 - \frac{E_{\max j}}{1 + 10^{\left(\log_{10}EC.50_j - \log c_p\right)^{q_f}}}\right) \\ E_{\max j} &= \frac{\exp(I_{\max j})}{1 + \exp(I_{\max j})} \end{split}$$

• Estimate the combinatory wells as a mixture of the individual profiles:

$$\mu_{i,comb} = \log_{10}(\pi_{WT} 10^{\mu_{i,WT}} + \pi_{MT} 10^{\mu_{i,MT}})$$

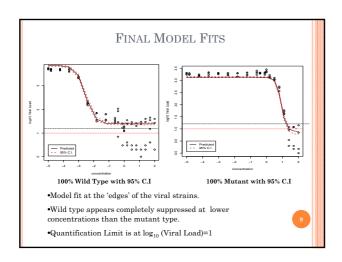
METHODOLOGY

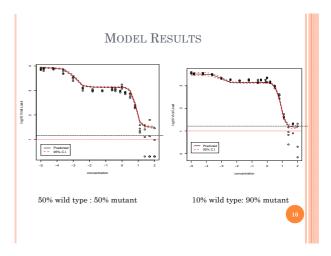
- Set of combinations; one function to fit it.
 - Monotone increasing function constrained between 0 and 1.
 - o Mimic the extremes 100%: 0%
 - Flexibility for the points within.
- o CDF of a Beta Distribution
 - Re-parametrized based on Ferrari Cribari-Neto
 the estimators of the proportions are changed such

that:
$$\pi_{wTorMT} = F\left(x;A,B\right)$$

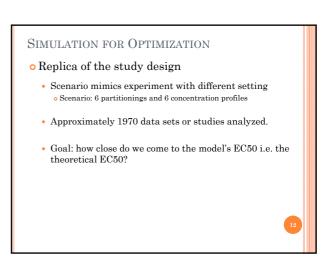
$$A = \mu \varphi$$

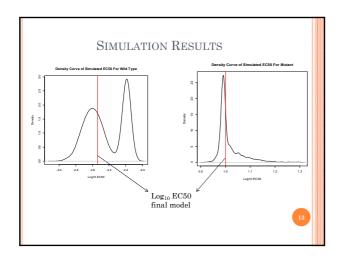
$$B = (1-\mu)\varphi$$





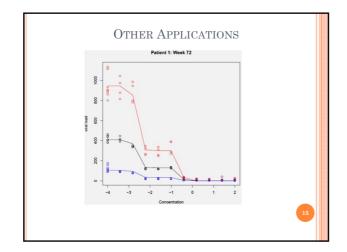
		Wild Type		Mutant Type	
Effect	Parameter	Estimate	95% C.I	Estimate	95% C.I.
Initial Estimate	E_0	2.47	2.41; 2.53	2.24	2.11; 2.37
Hill coefficient	$\eta_{\rm j}$	1.45	1.23; 1.68	2.74	2.36; 3.12
½ Max effective conc.	Log_{10} EC50	-2.54	-2.60; -2.49	0.92	0.89; 0.95
Max. estimate	Em	24.49	21.99; 26.97	7.91	5.59; 10.23
Growth factor	μ	0.18	0.16; 0.21	0.20	0.19; 0.21
Sigma	σ	0.16	0.17; 0.15	0.16	0.17; 0.15





OTHER APPLICATIONS

- Patients may carry one or both strains of the virus.
- Possible to not only carry this out but also to find the estimates of the growth rates for a patients using the same model.
- Scenario
 - Blood sample taken and ex-vivo the dose response.



CONCLUSION

- Modeling combinatory experiments gives insight to growth rates when both mutant and wild type strains are present.
 - Possible to see at which concentrations when in combinations that viral suppression is achieved.
- Close to theoretical or model EC50 when experiment is optimized.
- Model useful in patient information.
 - Able to tell at which concentrations suppression is achieved regardless of the viral strains present.

