Quantitative assessment of drug interactions by linear mixed effects modeling

Sven Stanzel¹
Helene Bayer²
Annette Kopp-Schneider¹

¹ Department of Biostatistics, German Cancer Research Center, Heidelberg

dkfz. GERMAN CANCER RESEARCH CENTER

² Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg

Non Clinical Statistics Conference 2012, Potsdam

September 26, 2012

4

Interaction index

- Quantitative method for assessment of interaction effects of two drugs
- Definition based on Loewe Additivity Model:

$$\tau = \frac{d_1}{D_{y,1}} + \frac{d_2}{D_{y,2}} \begin{cases} <1, \text{ synergy} \\ =1, \text{ additivity} \\ >1, \text{ antagonism} \end{cases}$$

- d₁, d₂: doses of drugs 1 and 2 that in combination produce effect y (known)
- D_{y,1}, D_{y,2}: doses of drugs 1 and 2 that produce same effect if applied singly (unknown)
- D_{v,1}: inverse of dose-response curve for drug 1
- D_{v,2}: inverse of dose-response curve for drug 2

3

Research question

Is interaction effect of two drugs additive, synergistic or antagonistic?

Statistical inference

Model dose-response curve for drug i (i = 1,2) by fitting **two-parameter log-logistic model** to normalized effect $y \in (0,1)$:

$$y = \frac{1}{1 + \left(\frac{D_{y,i}}{D_{m,i}}\right)^{b_i}}$$

 $D_{y,i}$: dose of drug i, producing effect y

 $D_{m,i}$: median effective dose of drug i (e.g EC $_{50}$, LD $_{50}$)

b_i: Hill slope (for drug i)

 Transfer model into median-effect equation (Chou and Talalay, Advances in Enzyme Regulation, 1984):

$$\frac{y}{1-y} = \left(\frac{D_{y,i}}{D_{m,i}}\right)^{-b_i}$$

• Two analysis approaches (Lee and Kong, Stat Biopharm Res, 2009)

Global assessment approach (1)

Assumption:

two drugs combined in ,fixed dose ratio':

$$\frac{d_1}{d_2} = \frac{\omega_1}{\omega_2}$$
, $d_1 + d_2 = D_C$, $D_C = (d_1, d_2)$

1. Taking log() of median-effect equation yields simple linear regression model:

$$\begin{split} \log\!\!\left(\frac{\mathcal{Y}}{1-\mathcal{Y}}\right) &= -b_i \cdot \! \left(\!\log\!\left(D_{_{\mathcal{Y},l}}\right) \!-\! \log\!\left(D_{_{m,l}}\right)\!\right) \!=\! : \beta_{_{0,l}} + \beta_{_{1,l}} \cdot \log\!\left(D_{_{\mathcal{Y},l}}\right), \quad \text{with} \\ \beta_{_{0,l}} &= b_i \cdot \log\!\left(D_{_{m,l}}\right) \quad , \quad \beta_{_{1,l}} = -b_i \end{split}$$

2. For drugs i = 1,2: Regress $\log(y/1-y)$ on $\log(D_{y,i})$ to estimate $\beta_{0,i}$ and $\beta_{1,i}$.

3 Estimation of τ

$$\boxed{\hat{\tau} = \frac{d_1}{\hat{D}_{y,1}} + \frac{d_2}{\hat{D}_{y,2}} \quad \text{with} \quad \hat{D}_{y,i} = \exp\biggl(-\frac{\hat{\beta}_{0,i}}{\hat{\beta}_{1,i}}\biggr) \cdot \biggl(\frac{y}{1-y}\biggr)^{1/\hat{\beta}_{i,i}} \ \ (i = 1,2)}$$

Global assessment approach (3)

Define grid of effects y

 $\hat{\tau}_{GA} = \frac{\hat{D}_{y,C}}{\hat{D}_{x,1}} \frac{\omega_1}{\omega_1 + \omega_2} + \frac{\hat{D}_{y,C}}{\hat{D}_{x,2}} \frac{\omega_2}{\omega_1 + \omega_2}$

(a) Use *modified* estimator $\hat{\tau}_{\mathit{GA}}$ to estimate interaction index τ .

(b) Apply **delta method** to compute approximative variance for $\hat{ au}_{\mathit{GA}}$:

$$\begin{aligned} & Var(\hat{\tau}_{GL}) = \left(\frac{\omega_{1}}{\omega_{1} + \omega_{2}} \cdot \frac{\hat{D}_{y,C}}{\hat{D}_{y,1}}\right)^{2} \cdot \left[\frac{Var(\hat{\beta}_{0,1})}{\hat{\beta}_{1,1}^{2}} + \frac{2 \cdot Cov(\hat{\beta}_{0,1}, \hat{\beta}_{1,1}) \cdot \left[\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,1}\right)}{\hat{\beta}_{1,1}^{2}} + \frac{Var(\hat{\beta}_{1,1}) \cdot \left[\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,1}\right)^{2}}{\hat{\beta}_{1,1}^{2}}\right] \\ & + \left(\frac{\omega_{2}}{\omega_{1} + \omega_{2}} \cdot \frac{\hat{D}_{y,C}}{\hat{D}_{y,2}}\right)^{2} \cdot \left[\frac{Var(\hat{\beta}_{0,2})}{\hat{\beta}_{1,2}^{2}} + \frac{2 \cdot Cov(\hat{\beta}_{0,2}, \hat{\beta}_{1,2}) \cdot \left[\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,2}\right)}{\hat{\beta}_{1,2}^{2}} + \frac{Var(\hat{\beta}_{1,2}) \cdot \left[\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,2}\right)}{\hat{\beta}_{1,2}^{2}}\right] \\ & + \left(\frac{2 \cdot Cov(\hat{\beta}_{0,2}, \hat{\beta}_{1,2}) \cdot \left[\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,2}\right]}{\hat{\beta}_{1,2}^{2}} + \frac{Var(\hat{\beta}_{1,2}) \cdot \left[\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,2}\right]}{\hat{\beta}_{1,2}^{2}}\right] \end{aligned}$$

 $+\left(\frac{\hat{D}_{y,C}}{\omega_{1}+\omega_{2}}\cdot\left(\frac{\omega_{1}}{\hat{D}_{y,1}}+\frac{\omega_{2}}{\hat{D}_{y,2}}\right)^{2}\cdot\left[\frac{Var\left(\hat{\beta}_{0,C}\right)}{\hat{\beta}_{1,C}^{2}}+\frac{2\cdot Cov\left(\hat{\beta}_{0,C},\hat{\beta}_{1,C}\right)\cdot\left(\log\left(\frac{y}{1-y}\right)-\hat{\beta}_{0,C}\right)}{\hat{\beta}_{1,C}^{2}}+\frac{Var\left(\hat{\beta}_{1,C}\right)\cdot\left(\log\left(\frac{y}{1-y}\right)-\hat{\beta}_{0,C}\right)^{2}}{\hat{\beta}_{1,C}^{2}}\right]$

Global assessment approach (2)

4. Make use of ,fixed dose ratio' assumption to modify equation for $\tau\mbox{:}$

$$d_1 = D_C \frac{\omega_1}{\omega_1 + \omega_2}, d_2 = D_C \frac{\omega_2}{\omega_1 + \omega_2}$$
 'fixed dose ratio'assumption:
$$\frac{d_1}{d_2} = \frac{\omega_1}{\omega_2}, d_1 + d_2 = D_C, D_C = (d_1, d_2)$$

'fixed dose ratio'assumption:

$$\frac{d_1}{d_2} = \frac{\omega_1}{\omega_2}, d_1 + d_2 = D_C, D_C = (d_1, d_2)$$

5. Estimate combination dose D_C at effect y:

$$\hat{D}_{y,C} = \exp\left(-\frac{\hat{\beta}_{0,C}}{\hat{\beta}_{1,C}}\right) \cdot \left(\frac{y}{1-y}\right)^{1/\hat{\beta}_{1,C}}$$

 $\hat{\tau} = \frac{d_1}{\hat{D}_{v,1}} + \frac{d_2}{\hat{D}_{v,2}}$

6. Modified estimator for τ:

$$\hat{\tau}_{GA} = \frac{\hat{D}_{y,C} \frac{\omega_1}{\omega_1 + \omega_2}}{\hat{D}_{y,1}} + \frac{\hat{D}_{y,C} \frac{\omega_2}{\omega_1 + \omega_2}}{\hat{D}_{y,2}}$$

Global assessment approach (4)

(c) Calculate approximative (1- α) confidence interval for τ :

$$\hat{\tau}_{GA} \cdot \exp\left(\pm \frac{t_{n+n_c-6;\alpha/2}}{\hat{\tau}_{GA}} \cdot \sqrt{Var(\hat{\tau})}\right)$$

 $n = \sum_{i=1}^{\infty} n_i$; n_i : # of observations when drug i is applied alone

 $n_{\rm s}$: # of observations when combination of two drugs is applied

Plot: effects y vs. estimated interaction indices $\hat{ au}_{GA}$

Computation of pointwise $(1-\alpha)$ confidence bound for curve

R code provided by Lee and Kong at:

http://biostatistics.mdanderson.org/SoftwareDownload/.

Drawback

Global assessment approach:

Assumes that all data were collected from a <u>single</u> dose-response experiment.

Drawback

Global assessment approach:

Assumes that all data were collected from a <u>single</u> dose-response experiment.

Practical situations:

Typically <u>several</u> dose-response experiments are performed for a test substance under study.

6

9

Drawback

Global assessment approach:

Assumes that all data were collected from a <u>single</u> dose-response experiment.

Practical situations:

Typically <u>several</u> dose-response experiments are performed for a test substance under study.

Naive solution

- (1) Merge data of all dose-response experiments.
- (2) Apply global assessment approach to merged data set.

10

Problem

Recall: Approximative variance of estimated interaction index:

$$\begin{split} &Var(\hat{\boldsymbol{\tau}}_{GA}) = \left(\frac{\omega_{l}}{\omega_{l} + \omega_{2}} \cdot \frac{\hat{D}_{j,C}}{\hat{D}_{j,1}}\right)^{2} \cdot \left[\frac{Var(\hat{\beta}_{0.1})}{\hat{\beta}_{1.1}^{2}} + \frac{2 \cdot Cov(\hat{\beta}_{0.1}, \hat{\beta}_{1.1}) \cdot \left[\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0.1}\right)}{\hat{\beta}_{1.1}^{2}} + \frac{Var(\hat{\beta}_{0.1}) \cdot \left[\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0.1}\right)^{2}}{\hat{\beta}_{1.1}^{2}}\right] \\ &+ \left(\frac{\omega_{2}}{\omega_{l} + \omega_{2}} \cdot \frac{\hat{D}_{j,C}}{\hat{D}_{j,2}}\right)^{2} \cdot \left[\frac{Var(\hat{\beta}_{0.2})}{\hat{\beta}_{1.2}^{2}} + \frac{2 \cdot Cov(\hat{\beta}_{0.2}, \hat{\beta}_{1.2}) \cdot \left[\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0.2}\right)}{\hat{\beta}_{1.2}^{2}} + \frac{Var(\hat{\beta}_{1.2}) \cdot \left[\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0.2}\right)^{2}}{\hat{\beta}_{1.2}^{2}}\right] \\ &+ \left(\frac{\hat{D}_{j,C}}{\omega_{l} + \omega_{2}} \cdot \left(\frac{\omega_{l}}{\hat{D}_{j,1}} + \frac{\omega_{2}}{\hat{D}_{j,2}}\right)\right)^{2} \cdot \left[\frac{Var(\hat{\beta}_{0.C})}{\hat{\beta}_{1.C}^{2}} + \frac{2 \cdot Cov(\hat{\beta}_{0.C}, \hat{\beta}_{1.C}) \cdot \left[\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0.C}\right)}{\hat{\beta}_{1.C}^{2}} + \frac{Var(\hat{\beta}_{1.C}) \cdot \left[\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0.C}\right)^{2}}{\hat{\beta}_{1.C}^{2}}\right] \\ &+ \frac{Var(\hat{\beta}_{1.C}) \cdot \left[\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0.C}\right]}{\hat{\beta}_{1.C}^{2}} + \frac{Var(\hat{\beta}_{1.C}) \cdot \left[\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0.C}\right]}{\hat{\beta}_{1.C}^{2}} + \frac{Var(\hat{\beta}_{1.C}) \cdot \left[\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0.C}\right]}{\hat{\beta}_{1.C}^{2}} \\ &+ \frac{Var(\hat{\beta}_{1.C}) \cdot \left[\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0.C}\right]}{\hat{\beta}_{1.C}^{2}} + \frac{Var(\hat{\beta}_{1.C}) \cdot \left[\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0.C}\right]$$

Problem

Recall: Approximative variance of estimated interaction index:

$$\begin{split} & Var(\hat{t}_{ai}) = \left(\frac{\omega_{l}}{\omega_{l} + \omega_{z}} \cdot \frac{\hat{D}_{y,C}}{\hat{D}_{y,l}}\right)^{2} \begin{bmatrix} Var(\hat{\beta}_{0,l}) + \frac{2 \cdot Cov(\hat{\beta}_{0,l}, \hat{\beta}_{l,l}) \cdot \left(\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,l}}{\hat{\beta}_{i,l}^{2}} + \frac{Var(\hat{\beta}_{l,l}) \cdot \left(\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,l}}{\hat{\beta}_{i,l}^{2}} \end{bmatrix} \\ & + \left(\frac{\omega_{b}}{\omega_{l} + \omega_{z}} \cdot \frac{\hat{D}_{y,C}}{\hat{D}_{y,2}}\right)^{2} \begin{bmatrix} Var(\hat{\beta}_{0,z}) + \frac{2 \cdot Cov(\hat{\beta}_{0,z}, \hat{\beta}_{l,z}) \cdot \left(\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,z}}{\hat{\beta}_{i,l}^{2}} + \frac{Var(\hat{\beta}_{l,z}) \cdot \left(\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,z}}{\hat{\beta}_{i,l}^{2}} \right) \end{bmatrix} Var(\hat{D}_{y,2}) \\ & + \left(\frac{\hat{D}_{y,C}}{\omega_{l} + \omega_{z}} \cdot \left(\frac{\omega_{l}}{\hat{D}_{y,l}} + \frac{\omega_{h}}{\hat{D}_{y,2}}\right)\right)^{2} \begin{bmatrix} Var(\hat{\beta}_{0,c}) + \frac{2 \cdot Cov(\hat{\beta}_{0,c}, \hat{\beta}_{l,c}) \cdot \left(\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,c}}{\hat{\beta}_{l,c}^{2}} + \frac{Var(\hat{\beta}_{l,c}) \cdot \left(\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,c}}{\hat{\beta}_{l,c}^{2}} \right) \end{bmatrix} Var(\hat{D}_{y,C}) \\ & + \left(\frac{\hat{D}_{y,C}}{\omega_{l} + \omega_{z}} \cdot \left(\frac{\omega_{l}}{\hat{D}_{y,l}} + \frac{\omega_{h}}{\hat{D}_{y,l}}\right)\right)^{2} \begin{bmatrix} Var(\hat{\beta}_{0,c}) + \frac{2 \cdot Cov(\hat{\beta}_{0,c}, \hat{\beta}_{l,c}) \cdot \left(\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,c}}{\hat{\beta}_{l,c}^{2}} \right) + \frac{Var(\hat{\beta}_{l,c}) \cdot \left(\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,c}}{\hat{\beta}_{l,c}^{2}} \right) \end{bmatrix} Var(\hat{D}_{y,C}) \end{aligned}$$

• Accounts for within-experiment variability (by variance terms $Var(\hat{D}_{v,i})$, i = 1, 2, C)

11

Problem

Recall: Approximative variance of estimated interaction index:

$$\begin{split} & \operatorname{Var}(\hat{\boldsymbol{r}}_{cd}) = \left(\frac{\boldsymbol{\omega}_{l}}{\boldsymbol{\omega}_{l} + \boldsymbol{\omega}_{2}} \cdot \hat{\boldsymbol{D}}_{j,c}} \cdot \hat{\boldsymbol{D}}_{j,c}^{-1}\right)^{2} \begin{bmatrix} \underbrace{\operatorname{Var}(\hat{\boldsymbol{\beta}}_{0,l})}_{\hat{\boldsymbol{\beta}}_{i,l}^{2}} + \frac{2 \cdot \operatorname{Cov}(\hat{\boldsymbol{\beta}}_{0,l},\hat{\boldsymbol{\beta}}_{l,l}) \cdot \left(\log\left(\frac{y}{1-y}\right) - \hat{\boldsymbol{\beta}}_{0,l}\right)}_{\hat{\boldsymbol{\beta}}_{l,l}^{2}} + \underbrace{\operatorname{Var}(\hat{\boldsymbol{\beta}}_{l,l}) \cdot \left(\log\left(\frac{y}{1-y}\right) - \hat{\boldsymbol{\beta}}_{0,l}\right)}_{\hat{\boldsymbol{\beta}}_{l,l}^{2}} + \underbrace{\operatorname{Var}(\hat{\boldsymbol{\beta}}_{l,l}) \cdot \left(\log\left(\frac{y}{1-y}\right) - \hat{\boldsymbol{\beta}}_{0,l}\right)}_{\hat{\boldsymbol{\beta}}_{l,l}^{2}} + \underbrace{\operatorname{Var}(\hat{\boldsymbol{\beta}}_{0,l}) \cdot \left(\log\left(\frac{y}{1-y}\right) - \hat{\boldsymbol{\beta}}_{0,l}\right)}_{\hat{\boldsymbol{\beta}}_{l,l}^{2}} + \underbrace{\operatorname{Var}(\hat{\boldsymbol{\beta}}_{l,l}) \cdot \left(\log\left(\frac{y}{1-y}\right) - \hat{\boldsymbol{\beta}}_{0,l}\right)}_{\hat{\boldsymbol{\beta}}_{l,l}^{2}} + \underbrace{\operatorname{Var}(\hat{\boldsymbol{\beta}}_{l,l}) \cdot \left(\log\left(\frac{y}{1-y}\right) - \hat{\boldsymbol{\beta}}_{0,l}\right) \cdot \left(\log\left(\frac{y}{1-y}\right) - \hat{\boldsymbol{\beta}}_{0,l}\right)}_{\hat{\boldsymbol{\beta}}_{l,l}^{2}} + \underbrace{\operatorname{Var}(\hat{\boldsymbol{\beta}}_{l,l}) \cdot \left(\log\left(\frac{y}{1-y}\right) - \hat{\boldsymbol{\beta}}_{0,l}\right)}_{\hat{\boldsymbol{\beta}}$$

Problem

Recall: Approximative variance of estimated interaction index:

$$Var(\hat{\tau}_{cls}) = \left(\frac{\alpha_{l}}{\alpha_{l} + \alpha_{l}} \cdot \frac{\hat{D}_{y,c}}{\hat{D}_{y,l}}\right)^{2} \left[\frac{Var(\hat{\beta}_{0,l})}{\hat{\beta}_{1,l}^{2}} + \frac{2 \cdot Cov(\hat{\beta}_{0,l}, \hat{\beta}_{l,l})}{\hat{\beta}_{1,l}^{2}} + \frac{\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,l}}{\hat{\beta}_{1,l}^{2}} + \frac{Var(\hat{\beta}_{1,l}) \cdot \left(\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,l}}{\hat{\beta}_{1,l}^{2}}\right)}{Var(\hat{D}_{y,1})} + \left(\frac{\alpha_{l}}{\alpha_{l} + \alpha_{l}} \cdot \frac{\hat{D}_{y,c}}{\hat{D}_{y,2}}\right)^{2} \left[\frac{Var(\hat{\beta}_{0,2})}{\hat{\beta}_{1,2}^{2}} + \frac{2 \cdot Cov(\hat{\beta}_{0,c}, \hat{\beta}_{l,c}) \cdot \left(\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,c}}{\hat{\beta}_{1,2}^{2}} + \frac{Var(\hat{\beta}_{l,2}) \cdot \left(\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,c}}{\hat{\beta}_{1,2}^{2}}\right)}{Var(\hat{D}_{y,2})} + \left(\frac{\hat{D}_{y,c}}{\alpha_{l} + \alpha_{l}} \cdot \frac{\hat{D}_{y,c}}{\hat{D}_{y,l}} + \frac{2 \cdot Cov(\hat{\beta}_{0,c}, \hat{\beta}_{l,c}) \cdot \left(\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,c}}{\hat{\beta}_{1,c}^{2}} + \frac{Var(\hat{\beta}_{l,c}) \cdot \left(\log\left(\frac{y}{1 - y}\right) - \hat{\beta}_{0,c}}{\hat{\beta}_{l,c}^{2}}\right)}{Var(\hat{D}_{y,c})} \right] \right] Var(\hat{D}_{y,c})$$

- Accounts for within-experiment variability (by variance terms $\mathit{Var}(\hat{D}_{y,i})$, i = 1, 2, C)
- Does <u>not</u> account for between-experiment variability !!!

11

11

Problem

Recall: Approximative variance of estimated interaction index:

$$\begin{split} & \textit{Var}(\hat{\boldsymbol{r}}_{at}) \!=\! \left(\frac{\boldsymbol{o}_{l}}{\boldsymbol{o}_{l} + \boldsymbol{o}_{2}} \! \cdot \! \frac{\dot{\boldsymbol{D}}_{\boldsymbol{y}, c}}{\dot{\boldsymbol{D}}_{\boldsymbol{y}, 1}} \right)^{2} \!\! \left[\!\! \frac{\boldsymbol{Var}(\hat{\boldsymbol{\beta}}_{0,1})}{\hat{\boldsymbol{\beta}}_{1,1}^{2}} \! + \!\! \frac{2 \cdot Cov(\hat{\boldsymbol{\beta}}_{0,1}, \hat{\boldsymbol{\beta}}_{1,1}) \! \left(\log \! \left(\frac{\boldsymbol{y}}{1-\boldsymbol{y}} \right) \! - \! \hat{\boldsymbol{\beta}}_{0,1} \right) \! + \!\! \frac{\boldsymbol{Var}(\hat{\boldsymbol{\beta}}_{0,1}) \! \left(\log \! \left(\frac{\boldsymbol{y}}{1-\boldsymbol{y}} \right) \! - \! \hat{\boldsymbol{\beta}}_{0,1} \right)^{2}}{\hat{\boldsymbol{\beta}}_{1,1}^{2}} \right] \\ & + \left(\frac{\boldsymbol{o}_{2}}{\boldsymbol{o}_{1} + \boldsymbol{o}_{2}} \cdot \frac{\hat{\boldsymbol{D}}_{\boldsymbol{y}, c}}{\hat{\boldsymbol{D}}_{\boldsymbol{y}, 2}} \right)^{2} \!\! \left[\!\! \frac{\boldsymbol{Var}(\hat{\boldsymbol{\beta}}_{0,2})}{\hat{\boldsymbol{\beta}}_{1,2}^{2}} \! + \!\! \frac{2 \cdot Cov(\hat{\boldsymbol{\beta}}_{0,2}, \hat{\boldsymbol{\beta}}_{1,2}) \! \left(\log \! \left(\frac{\boldsymbol{y}}{1-\boldsymbol{y}} \right) \! - \! \hat{\boldsymbol{\beta}}_{0,2} \right) \! + \!\! \frac{\boldsymbol{Var}(\hat{\boldsymbol{\beta}}_{1,2}) \! \left(\log \! \left(\frac{\boldsymbol{y}}{1-\boldsymbol{y}} \right) \! - \! \hat{\boldsymbol{\beta}}_{0,2} \right) \! \right) \! \\ & + \left(\frac{\hat{\boldsymbol{D}}_{\boldsymbol{y}, c}}{\boldsymbol{o}_{1} + \boldsymbol{o}_{2}} \cdot \left(\frac{\boldsymbol{o}_{1}}{\hat{\boldsymbol{D}}_{\boldsymbol{y}, 1}} \! + \! \frac{\boldsymbol{o}_{2}}{\hat{\boldsymbol{D}}_{\boldsymbol{y}, 2}} \right) \! \right)^{2} \! \left[\!\! \frac{\boldsymbol{Var}(\hat{\boldsymbol{\beta}}_{0,c})}{\hat{\boldsymbol{\beta}}_{1,c}^{2}} \! + \! \frac{2 \cdot Cov(\hat{\boldsymbol{\beta}}_{0,c}, \hat{\boldsymbol{\beta}}_{1,c}) \! \left(\log \! \left(\frac{\boldsymbol{y}}{1-\boldsymbol{y}} \right) \! - \! \hat{\boldsymbol{\beta}}_{0,c} \right) \! + \! \frac{\boldsymbol{Var}(\hat{\boldsymbol{\beta}}_{1,c})}{\hat{\boldsymbol{\beta}}_{1,c}^{2}} \right) \! Var(\hat{\boldsymbol{D}}_{\boldsymbol{y},2}) \right] \\ & + \left(\frac{\hat{\boldsymbol{D}}_{\boldsymbol{y}, c}}{\boldsymbol{o}_{1} + \boldsymbol{o}_{2}} \cdot \! \left(\frac{\boldsymbol{o}_{1}}{\hat{\boldsymbol{D}}_{\boldsymbol{y}, 1}} \! + \! \frac{\boldsymbol{o}_{2}}{\hat{\boldsymbol{D}}_{\boldsymbol{y}, 2}} \right) \! \right)^{2} \! \left[\!\! \frac{\boldsymbol{Var}(\hat{\boldsymbol{\beta}}_{0,c})}{\hat{\boldsymbol{\beta}}_{1,c}^{2}} \! + \! \frac{2 \cdot Cov(\hat{\boldsymbol{\beta}}_{0,c}, \hat{\boldsymbol{\beta}}_{1,c}) \! \left(\log \! \left(\frac{\boldsymbol{y}}{1-\boldsymbol{y}} \right) \! - \! \hat{\boldsymbol{\beta}}_{0,c} \right) \! + \! Var(\hat{\boldsymbol{\beta}}_{1,c}) \! \left(\log \! \left(\frac{\boldsymbol{y}}{1-\boldsymbol{y}} \right) \! - \! \hat{\boldsymbol{\beta}}_{0,c} \right) \! \right) \right] \\ & + \left(\!\! \frac{\hat{\boldsymbol{D}}_{\boldsymbol{y}, c}}{\boldsymbol{o}_{1} + \boldsymbol{o}_{2}} \cdot \! \left(\!\! \frac{\hat{\boldsymbol{D}}_{\boldsymbol{y}, c}}{\hat{\boldsymbol{\beta}}_{1,c}} \! + \! \frac{\boldsymbol{o}_{2}}{\hat{\boldsymbol{D}}_{\boldsymbol{y}, c}} \right) \! \right) \! \right) \! \left[\!\! \frac{\boldsymbol{Var}(\hat{\boldsymbol{\beta}}_{0,c})}{\hat{\boldsymbol{\beta}}_{1,c}^{2}} \! + \! \frac{\boldsymbol{Var}(\hat{\boldsymbol{\beta}}_{0,c}, \hat{\boldsymbol{\beta}}_{1,c}) \! \left(\log \! \left(\frac{\boldsymbol{y}}{1-\boldsymbol{y}} \right) \! - \! \hat{\boldsymbol{\beta}}_{0,c} \right) \! \right) \! + \! Var(\hat{\boldsymbol{\beta}}_{0,c}) \! \right) \! \right] \! \left[\boldsymbol{Var}(\hat{\boldsymbol{\beta}}_{0,c}) \! \right] \! \right] \! \left[\boldsymbol{Var}(\hat{\boldsymbol{\beta}}_{0,c}) \! \left(\boldsymbol{\delta}_{0,c} \cdot \hat{\boldsymbol{\beta}}_{0,c} \right) \! \left(\boldsymbol{\delta}_{0,c} \cdot \hat{\boldsymbol{\beta}}_{0,c} \right) \! \right] \! \left[\boldsymbol{Var}(\hat{\boldsymbol{\beta}}_{0,c}) \! \left(\boldsymbol{\delta}_{0,c} \cdot \hat{\boldsymbol{\beta}}_{0,c} \right) \! \right] \! \left[\boldsymbol{Var}(\hat{\boldsymbol{\beta}}_{0,c}) \! \left($$

- Accounts for within-experiment variability (by variance terms $Var(\hat{D}_{v,i})$, i = 1, 2, C)
- Does not account for between-experiment variability !!!
- Large between-experiment variability can have great impact on estimation of interaction index

11

Proposal (2)

(3) Plug in mixed effects model estimates of $\beta_{0,i}$, $\beta_{1,i}$, $Var(\beta_{0,i})$, $Var(\beta_{1,i})$ and $Cov(\beta_{0,1},\beta_{1,i})$ (i = 1, 2, C) into formulas for $\hat{\tau}_{G,i}$ and $Var(\hat{\tau}_{G,i})$, to yield reliable estimates of τ :

$$\begin{split} \hat{\tau}_{cit} &= \frac{\hat{D}_{y,C}}{\hat{D}_{y,i}} + \frac{\hat{D}_{y,C}}{\hat{D}_{y,i}} + \frac{\hat{D}_{y,C}}{\hat{D}_{y,2}} , \quad \hat{D}_{y,j} &= \exp\left(-\frac{\hat{\beta}_{0,i}}{\hat{\beta}_{i,i}}\right) \cdot \left(\frac{y}{1-y}\right)^{1/\hat{\beta}_{i,i}} \\ Var(\hat{\tau}_{cit}) &= \left(\frac{\omega_{i}}{\omega_{i} + \omega_{i}} \cdot \frac{\hat{D}_{y,C}}{\hat{D}_{y,i}}\right)^{2} \cdot \left[\frac{Var(\hat{\beta}_{0,1})}{\hat{\beta}_{i,1}^{2}} + \frac{2 \cdot Cov(\hat{\beta}_{0,3}, \hat{\beta}_{i,3}) \cdot \left(\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0,1}}{\hat{\beta}_{i,1}^{2}} + \frac{Var(\hat{\beta}_{i,1}) \cdot \left(\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0,1}}{\hat{\beta}_{i,1}^{2}}\right) + \frac{Var(\hat{\beta}_{i,2}) \cdot \left(\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0,1}\right)^{2}}{\hat{\beta}_{i,1}^{2}} \right] \\ &+ \left(\frac{\omega_{2}}{\omega_{i} + \omega_{2}} \cdot \frac{\hat{D}_{y,C}}{\hat{D}_{y,2}}\right)^{2} \cdot \left[\frac{Var(\hat{\beta}_{0,2})}{\hat{\beta}_{i,2}^{2}} + \frac{2 \cdot Cov(\hat{\beta}_{0,2}, \hat{\beta}_{i,2}) \cdot \left(\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0,2}\right)}{\hat{\beta}_{i,2}^{2}} + \frac{Var(\hat{\beta}_{i,2}) \cdot \left(\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0,2}\right)^{2}}{\hat{\beta}_{i,2}^{2}} \right] \\ &+ \left(\frac{\hat{D}_{x,C}}{\omega_{i} + \omega_{i}} \cdot \left(\frac{\omega_{i}}{\hat{D}_{y,1}} + \frac{\omega_{i}}{\hat{D}_{y,2}}\right)\right)^{2} \cdot \left[\frac{Var(\hat{\beta}_{0,C})}{\hat{\beta}_{i,C}^{2}} + \frac{2 \cdot Cov(\hat{\beta}_{0,C}, \hat{\beta}_{i,C}) \cdot \left(\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0,C}\right)}{\hat{\beta}_{i,C}^{2}} + \frac{Var(\hat{\beta}_{i,C}) \cdot \left(\log\left(\frac{y}{1-y}\right) - \hat{\beta}_{0,C}\right)}{\hat{\beta}_{i,C}^{2}} \right] \right] \end{aligned}$$

(4) Modify R code provided by Lee and Kong accordingly.

13

Proposal (1)

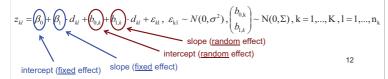
- (1) Merge data of all dose-response experiments.
- (2) Global assessment approach: For each drug (combination), replace (fixed effects) simple linear regression model

$$z_j = \beta_0 + \beta_1 \cdot d_j + \varepsilon_j, \ \varepsilon_j \sim N(0, \sigma^2)$$

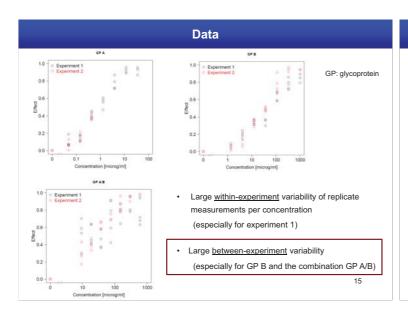
 $d_j : \log(\text{dose}) \text{ for observation } j = 1, \dots, N = \sum_{k=1}^K n_k \ , \ n_k : \text{\# of observations in experiment k = 1, ..., K}$

 $z_{j} = \log \left(\frac{y_{j}}{1 - y_{j}} \right), y_{j} \in (0,1)$

by linear mixed effects model



Application to cancer research study



Parameter estimates

Situation	$\hat{eta}_{\scriptscriptstyle 0}$		$\hat{eta}_{\scriptscriptstyle m l}$		
	Fixed Effects Model	Mixed Effects Model*	Fixed Effects Model	Mixed Effects Model*	
GP A	0.0812	0.0804	0.8876	0.8864	
GP B	- 2.9581	- 2.9330	0.8042	0.8050	
GP A/B	- 2.1628	- 2.3112	0.7290	0.7732	

 Small difference in parameter estimates between fixed effects and mixed effects modeling approach

* random intercept + random slope

Parameter estimates

Situation	$\hat{eta}_{\scriptscriptstyle 0}$		$\hat{eta}_{\scriptscriptstyle 1}$	$\hat{eta}_{_{\mathrm{l}}}$		
	Fixed Effects Model	Mixed Effects Model*	Fixed Effects Model	Mixed Effects Model*		
GPA	0.0812	0.0804	0.8876	0.8864		
GP B	- 2.9581	- 2.9330	0.8042	0.8050		
GP A/B	- 2.1628	- 2.3112	0.7290	0.7732		

* random intercept + random slope

Parameter estimates/variances

Situation	$\hat{eta}_{_{0}}$ (Var)		$\hat{eta}_{_{\mathrm{I}}}$ (Var)		
	Fixed	Mixed	Fixed	Mixed	
	Effects	Effects	Effects	Effects	
	Model	Model*	Model	Model*	
GP A	0.0812	0.0804	0.8876	0.8864	
	(0.0055)	(0.0053)	(0.0012)	(0.0044)	
GP B	- 2.9581	- 2.9330	0.8042	0.8050	
	(0.0324)	(0.1875)	(0.0019)	(0.0285)	
GP A/B	- 2.1628	- 2.3112	0.7290	0.7732	
	(0.1528)	(1.5555)	(0.0079)	(0.1200)	

 Small difference in parameter estimates between fixed effects and mixed effects modeling approach

* random intercept + random slope

16

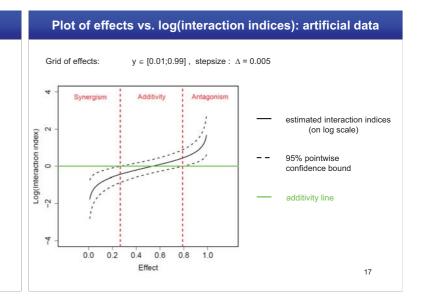
Parameter estimates/variances/covariances

Situation	$\hat{eta}_{\scriptscriptstyle 0}$ (Var)		$\hat{eta}_{_{\! 1}}$ (Var)		$Cov\left(\hat{eta}_{0},\hat{eta}_{1} ight)$	
	Fixed Effects Model	Mixed Effects Model*	Fixed Effects Model	Mixed Effects Model*	Fixed Effects Model	Mixed Effects Model*
GPA	0.0812 (0.0055)	0.0804 (0.0053)	0.8876 (0.0012)	0.8864 (0.0044)	- 0.0002	- 0.0003
GP B	- 2.9581 (0.0324)	- 2.9330 (0.1875)	0.8042 (0.0019)	0.8050 (0.0285)	- 0.0068	- 0.0717
GP A/B	- 2.1628 (0.1528)	- 2.3112 (1.5555)	0.7290 (0.0079)	0.7732 (0.1200)	- 0.0331	- 0.4303

 Small difference in parameter estimates between fixed effects and mixed effects modeling approach

16

* random intercept + random slope

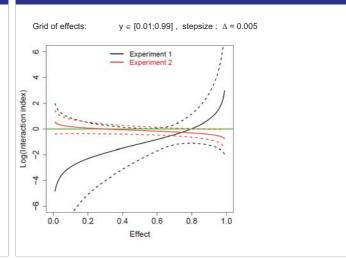


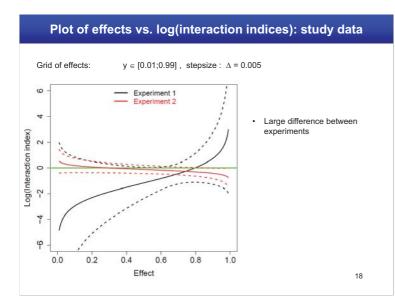
Parameter estimates/variances/covariances

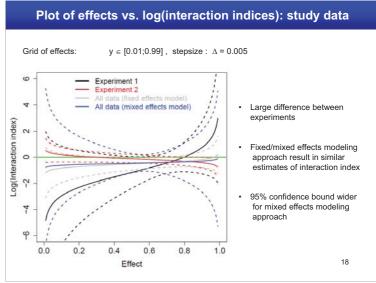
Situation	$\hat{eta}_{_{0}}$ (Var)		$\hat{eta}_{_{\mathrm{I}}}$ (Var)		$Cov\left(\hat{eta}_{0},\hat{eta}_{1} ight)$	
	Fixed Effects Model	Mixed Effects Model*	Fixed Effects Model	Mixed Effects Model*	Fixed Effects Model	Mixed Effects Model*
GPA	0.0812 (0.0055)	0.0804 (0.0053)	0.8876 (0.0012)	0.8864 (0.0044)	- 0.0002	- 0.0003
GP B	- 2.9581 (0.0324)	- 2.9330 (0.1875)	0.8042 (0.0019)	0.8050 (0.0285)	- 0.0068	- 0.0717
GP A/B	- 2.1628 (0.1528)	- 2.3112 (1.5555)	0.7290 (0.0079)	0.7732 (0.1200)	- 0.0331	- 0.4303

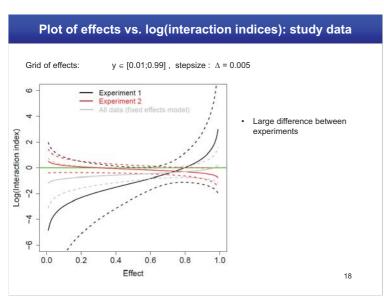
- Small difference in parameter estimates between fixed effects and mixed effects modeling approach
- Fixed effects modeling approach underestimates variances/covariances of parameter estimates

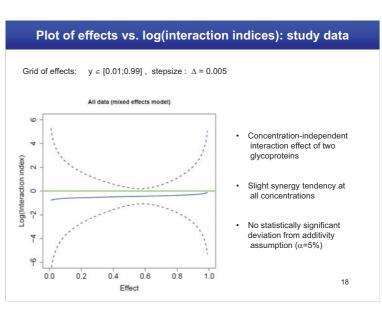
* random intercept + random slope











Discussion

- Global assessment approach (Lee and Kong, 2009) allows quantitative assessment of drug interactions for complete dose range.
- <u>Drawback</u>: approach assumes that all data were collected from a single dose-response experiment
- If more than one experiment:
 - (1) Merge data of all dose-response experiments.
 - (2) Lee and Kong procedure: replace simple linear regression model by linear mixed effects model.
 - Accounts for variability between experiments.
 - Yields reliable estimates of the interaction index.
 - Confidence bounds for curve of estimated interaction indices will be wide in case of few experiments with large betweenexperiment variability.

References

Bayer, H., Essig, K., Stanzel, S., Frank, M., Gildersleeve, J.C., Berger, M.R., Voss, C. (2012). Evaluation of Riproximin Binding Properties Reveals a Novel Mechanism for Cellular Targeting. *Journal of Biological Chemistry, in press.*

Chou, T.-C., Talalay, P. (1984). Quantitative Analysis of Dose Effect Relationships: The Combined Effects of Multiple Drugs or Enzyme Inhibitors. *Advances in Enzyme Regulation*, 22: 27-55.

Lee, J.J., Kong, M. (2009). Confidence Intervals of Interaction Index for Assessing Multiple Drug Interaction. Stat Biopharm Res, 1: 4-17.