Quasi-species Identification by Model Based Clustering

Massively parallel sequencing

Bie Verbist Ghent University – Janssen

Potsdam - September 26t

Quasi-species identification by model-based clusteri

- Introduction
- Goal
- Massively parallel sequencing
 - Technology
 - Quality scores
- Model-based clustering
- Results

Potsdam - September 26th

r species identification by model based clastern

Introduction

• Identify and quantify quasi-species.

- Focus on low-frequency variants
- Deep sequencing: in-depth characterization of sequence variation.

Potsdam - September 26th

$\begin{aligned} & \textbf{Massively Parallel Sequencing} \\ & - \textbf{Chastity } (\textbf{C}_{ii}) \text{:} \\ & \textbf{max. intensity / sum of the 2 highest intensities} \end{aligned}$

Model-Based Clustering

- Notation:
 - $-\mathbf{r}_{i}$: best base calls of read i (i=1 ... n)
 - $-\mathbf{s}_i$: second best base calls of read i ($i=1 \dots n$)
 - $-z_{ij}$: z_{ij} =1 when read i belongs to haplotype j (j=1...k)
 - $-\tau_i$: probability to belong to haplotype j
- Complete Data Likelihood:

$$L = \prod_{i=1}^{n} \prod_{i=1}^{n} (f_{j}(\mathbf{r}_{i}, \mathbf{s}_{i})\tau_{j})^{z_{ij}} \quad with \ f_{j}(\mathbf{r}, \mathbf{s}) = Prob(\mathbf{r}, \mathbf{s}|\text{haplotype } j)$$

Potsdam - September 26t

Quasi-species identification by model-based clustering $L = \prod_{i=1}^n \prod_{j=1}^k (f_j(\mathbf{r}_i,\mathbf{s}_i)\tau_j)^{z_{ij}}$ $with f_j(\mathbf{r}_i,\mathbf{s}_i) = \prod_{l=1}^m \theta_{ril}^{l(r_{il}=h_{jl})} \theta_{sil}^{l(s_{il}=h_{jl})} \theta_{oil}^{\left(1-l(r_{il}=h_{jl})\right)\left(1-l(s_{il}=h_{jl})\right)}$ $Prob(\text{base } l \text{ of read } i = \text{base } l \text{ of haplotype } j) = \begin{cases} \theta_{ril} & \text{base} \\ \theta_{sil} \text{ second base} \end{cases}$ $\theta_{oil} = 1 - \theta_{ril} - \theta_{sil}$ • Model is overidentified

luasi-species identification by model-based clusterin

Model-Based Clustering

• Model θ parameters:

$$\begin{split} \log \frac{\theta_{ril}}{\theta_{oil}} &= \beta_{0r} + \beta_{1r}Q_{il} + \beta_{2r}Q_{i(l-1)} + \beta_{3r}C_{il} + \beta_{4r}H_{il} \\ \log \frac{\theta_{sil}}{\theta_{oil}} &= \beta_{0s} + \beta_{1s}Q_{il} + \beta_{2s}Q_{i(l-1)} + \beta_{3s}C_{il} + \beta_{4r}H_{il} \end{split}$$

- Complexity reduced to 10 β-parameters
- Likelihood still depends on haplotype membership

$$L = \prod_{i=1}^{n} \prod_{j=1}^{k} (f_j(\mathbf{r}_i, \mathbf{s}_i) \tau_j)^{z_{ij}}$$

Potsdam - Sentember 26ti

Quasi-species identification by model-based clustering

Model-Based Clustering

- EM algorithm
 - E step: update posterior probability

 $\widehat{z_{ij}} = Prob(\text{read } i \text{ is of haplotype } j|\text{observed data})$

 $-\,$ M step: update $\,\beta\,$ parameters by maximizing expected likelihood

till convergence

Potedam - September 26th

-species identification by model-based clusterin

Model-Based Clustering

End result

- After conversion
 - $\widehat{z_{ij}} = Prob(\text{read } i \text{ is of haplotype } j|\text{observed data})$
 - haplotype frequency τ_i

$$\widehat{\tau}_j = \frac{\sum_{i=1}^n \widehat{z_{ij}}}{n}$$

Potsdam - September 26t

Conclusion Model-Based Clustering approach to identify and quantify quasi-species. Benchmark data: All haplotypes are discovered Slighlty underestimation of frequency Error variants at same frequency have lower posterior probabilities however distinction is not yet clear.

Corrected raw intensities

- Corrected for
 - signal amplitude: due to inequality of fluor emission intensities
 - spectral cross talk: overlap of emission frequency correction using the calculated matrix file
 - phasing and pre-phasing values: estimates of the proportion of molecules out of sync - behind or ahead

Split in forward/reverse data frame
 Perform analysis twice – same results??

FEEDBACK CONFERENCE