

Biophysical Rationale and Quantitative Benefits of using Linear Mixed Effect Models to summarize Transitions of Peptides to Protein abundances in SRM

What is SRM / Field of application

- SRM
 - stands for Selective Reaction Monitoring.
 - is a mass spectrometry based method for quantitative measurement of target proteins.
- MRM^TM is a trademark of AB SCIEX, but has the same principle.
- Fields of application in pharmaceutical research:
 - Pharmacodynamic: quantitation of proteins if the there is no antibody available, but target protein quite abundant (e.g. study of apoliproteins from rabbit plasma in dyslipidemic models).
 - Pharmacokinetic of therapeutic peptides.

Content

- What is SRM / Field of application
- How does SRM work?
- Problem in current applications
- Biophysical Rationale
- Quantitative Benefit Data Simulation
- Quantitative Benefit Real Data
- Conclusion

Roche

Biophysical Rationale

How are protein abundances determined now and what is the problem?

PROBLEM IN CURRENT

APPLICATIONS

- It is still common to relate the relative abundance of a protein by taking the
 - Sum
 - Mean, or
 - Median

of the peak Areas of transitions.

- Problem arises if 1-2 transition are not determined because it is
 - An outlier (e.g. by contamination of signal)
 - Below limit of Quantitation.

Transitions-Peptide-Protein Model I *Assumptions*

Roche

After trypsination, a peptide's concentration should be function of the originating proteins concentration:

c(Peptide) = c(Protein) *
$$f_{\text{Tryps, p}}$$
 * ϵ_1 $f_{\text{Tryps, p:}} \in [0,1]$

 The number of ionized peptides after Electron Spray Ionization is a function of the peptides concentration:

n(Peptide) = c(Peptide) *
$$f_{lon, p}$$
 * ϵ_2

• The AUC of transitions over MS/MS and fragmentation is a function of the number of ES – ionized peptides passing the mass selection in MS and the fragmentation factor $f_{\rm frag}.$

A(Transition) = n(Peptide) *
$$f_{frag, p}$$
 * ϵ_3

 Combining the three terms forms a relation between A and protein abundance:

A(Transition) = c(Protein) *
$$f_{Tryps, p}$$
 * $f_{Ion, p}$ * $f_{frag} \epsilon_*$

Transitions-Peptide-Protein Model II

Assumptions

After log-transformation, factors become addends:

$$\begin{split} \log(A(Transition)) &= \log(c(Protein)) + \log(f_{Tryps,p} * f_{lon,p}) + \log(f_{frag}) + \log(\varepsilon) \\ \log(A(Transition)) &= \frac{RelAbundanceProtein}{RelAbundanceProtein} + \frac{Re$$

- · Assumptions:
 - PeptideEffect $\sim N(0, \sigma_p)$
 - FragEffect ~ N(0, $\sigma_{f(p)}$)
 - $\varepsilon \sim N(0, \sigma_e)$
- Example of a hierarchical, mixed effect model where a transition is nested in a peptide which is nested in protein.
- log(A(Transition)) ~ 0 + SampleID + (1| PeptideID/TransitionID)

Data Simulation: Study Design

· Data Simulation:

- True, nominal abundance from 1 to 10 au; protein with 3 peptides (boxes), each with 3 transitions (colors).
- Transition Areas are computed from imaginary ionization and fragmentation factors multiplied with nominal abundance.
- 'Below Limit of Quantitation' is simulated by setting all areas below 10 to NA.

Roche

QUANTITATIVE BENEFIT-DATA SIMULATION

Data Simulation: Bias Plot

obs. abund. - nom. abund. [au]

- Bias Plot (observed-nominal) ~ nominal
- At low nominal abundances (where most NA occur,)
 - Sum of transitions deviates strongly from 0 residual (> 100 % off in relative terms), is biased towards reporting lower observed abundances than true nominal abundance
 - mean, or median of transitions ALSO deviate from 0 with a positive bias.
 - LME (black) shows no bias and has smallest residual.

QUANTITATIVE BENEFIT -REAL DATA

Roche Influence of NA cut off % and **Ionization Efficiency Heterogeneity on Bias** Ionization Eff. Heterogeneity Mid High % 0 NA cut off % 12.5 % 25 %

Roche

Spike-in of defined concentrations of "heavy-labeled" peptide A in human plasma. No interference with

endogenous "light" peptide A.

- Each sample measured with three transitions (o, o, o) in two blocks (A &
- Transition o has low ionization efficiency and is not available in all

Summary & Conclusions I How to infer protein abundance from SRM transitions

- Roche
- SRM for quantitation of proteins and peptides:
 - Very useful if the there is no antibody available, but target protein quite abundant.
- Biophysical Rationale:
 - Hierarchical, mixed effect model explains best that a transition is nested in a peptide which is nested in protein.
- Data Simulation: At low nominal abundances (where most NA occur)
 - Sum of transitions deviates strongly from 0 residual, is biased towards reporting lower observed abundances than true nominal abundance.
 - mean, or median of transitions ALSO deviate from 0 report a positive bias
 - LME (black) shows no bias and has smallest residual.
 - The higher the percentage of NA, the more important it is to use LME.

Summary & Conclusions II

- Real Data Example:
 - Accuracy: LME is better than sum, mean or median, especially if experimental conditions (e.g. blocking factors) are considered.
 - Repeatability: LME provides more repeatability compared to sum of transitions, but is not better than mean or median

The Contributors

- Anton Belousov
- Paul Cutler
- Guillemette Duchateau-Nguyen
- Gonzalo Durán-Pacheco
- Heinz Döbeli
- Arno Friedlein
- Jens Lamerz

... And beyond.

Protein Significance Analysis in Selected Reaction Monitoring (SRM) Measurements*

Ching-Yun Changt, Paola Picotti§, Ruth Hüttenhain§t‡, Viola Heinzelmann-Schwarz¶, Marko Jovanovic**, Ruedi Aebersold§‡‡§§, and Olga Vitek‡¶¶

Molecular & Cellular Proteomics 11.4

10.1074/mcp.M111.014662-1

- Using LME has more advantages:
 - In a variety of experimental designs, LMEM combined with SRM have increased power compared to naïve t-tests.
 - Extensions can be made to specify heterogeneity of biological and technical variance components across features or conditions.

We Innovate Healthcare

Acknowledgements

Mass Spectrometry Based Quantification of CYP Enzymes to Establish *In Vitro-In Vivo* Scaling Factors for Intestinal and Hepatic Metabolism in Beagle Dog

Als T. Helkkinen - Amo Friedlein - Jens Lamenz - Peter Jakob - Paul Cutler - Stephen Fowler - Tara Williamson - Roberto Tolando - Thierry Line - Nell Parrott

A. T. Helkinen - S. Fowler - T. Lae - N. Parrot (ini)
F. Heltrann-La Rothe Ltd., Planmandroth Diston
Non-Clinical Select
Conscioler states (19, 1924) 30
Conscioler states (19, 1924) 30
e-mail: nel _john parrotiljinoche com
A. Fordien - J. Lamer - P. Jakob - P. Cuder
Translational Reservict Sonoce, Planmandroth
Diston F. Hoffman-La Roche Ltd.
Bost Solvatimed