

USING FUNCTIONAL DATA ANALYSIS FOR TIME-DEPENDENT OPTIMIZATION OF BATCH PROCESSES

Hadley Myers, JMP

October 3-4-5 2018 Maison de la Chimie, Paris

PREAMBLEUSING FUNCTIONAL DATA ANALYSIS FOR TIME-
DEPENDENT OPTIMIZATION OF BATCH PROCESSES

- Wolfgang Ketterle, Nobel Lecture (2001)
 - "Imagine how many aspects of nature we would miss if we lived on the surface of the sun...without refrigerators."

- If we can create conditions that haven't been created before, then we'll make new discoveries.
 - If we look at things in a way that hasn't been done before, then we'll see new things.

on de la Chimie, Paris

• If we analyze data using new methods, then we'll gain new insights.

- Very often, data will be "telemetric" in nature many repeated measures of several metrics through time.
 - This is true of data from many sources.
 - Machines output
 - Traditional time series data
 - Sensor data
 - Vibration signals
- A wide variety of specific tools and methods have been created to deal with this type of data:
 - Signal Processing
 - ARIMA Time Series
 - Partial Least Squares
 - Growth Curves via SEM
 - Mixed Models

- Many products are made in batches by machines that now have many sensors embedded in them
- Sensors record things like temperature, pressure, feed rate, chemical content (ammonia, CO2, ethanol, sugar), vibration, etc.
- Companies care about end results:
 - Yield: the quantity of product created (yield)
 - Quality: Measurable properties of the product (flavor, room temperature viscosity, shear strength, chemical composition)
- They want to understand how the sensor readings relate to the end results
 - To fix 'bad batches', or terminate their production early
 - Reduce occurrence of bad batches (process improvement)
- This is not a new problem Due to the explosion of data access a lot more people want to take advantage of functional data

<u>on de la Chimie, Paris</u>

- Traditional approaches are too often inadequate and overcomplicated
 - Converting data to wide format (one input variable per time period) and using PLS.
 - Data cleaning step can be very time-consuming.
 - Sparse table if time-points not aligned, lost data if sizes not equal.
 - Difficult to interpret results for optimization (may be possible for early flagging of batches)
 - Least Squares modeling of summary statistics (mean, min, max, etc.).
 - Too simple, all time-dependent information is lost.
 - Model says nothing about the shape of the functions.
 - Fitting logistic curves, using parameter estimates as features.
 - Very limited in the set of shapes of curves that can be fit.
 - More flexibility needed than simple logistic curves and Gaussian peak models (again, too simple).

DEALING WITH TELEMETRIC DATA (TRADITIONAL APPROACH)

Goldrick et al.: MVDA of Trisulfide Bond Formation, Biotechnology and Bioengineering, Vol. 114, No. 10, October, 2017

October 3-4-5 2018 Maison de la Chimie, Paris

USES OF FUNCTIONAL DATA ANALYSIS

- 1. Functional factors, constant responses.
- 2. Constant factors, functional responses.
- 3. Both functional factors and functional responses.

Example: Maximizing the yield of human insulin produced by modified yeast cells.

ctober 3-4-5

Maison de la Chimie, Paris

TABLE OF RAW DATA

Fermentation Process Sensor Data - JMP Pro

File	Edit	Tables	Rows	Cols	DOE	Analyze	Graph	Six Sigma Tools	Tools	Add-Ins	View	Window	Help
: 20	3	3 🖬 🗋	K 🖬 🕯	B	H		y 🐜						

Source			BatchID	Time	Ethanel	Temp	Molasses Feed	NH3 Feed	Air	Tank Level	ъH
		1	1	0	0.678	30.2	36.6	07	1724	43.02	6 13
		2	1	0 121	0 797	30.3	129.6	4	1955	42,21	6 22
	•	3	1	0.242	1.06	30.5	361.7	12.1	2134	41.8	6.7
	•	4	1	0.364	1.346	30.6	678.4	28	2247	41.3	6.24
	•	5	1	0,485	0,609	30,4	985,1	53.4	2561	40,75	6,18
	•	6	1	0,606	0,754	30,6	1196,4	71,4	2557	40,93	6,09
	•	7	1	0,727	0.61	30,7	1279,2	77,7	2938	40,48	5,52
	•	8	1	0,848	0,448	30,9	1146,3	82,7	2785	40,61	5,22
	•	9	1	0,97	0,629	30,8	1063,2	73,9	2905	40,76	5
	•	10	1	1,091	0,417	30,9	869,1	68,4	3110	40,58	4,93
Columns (10.		11	1	1,212	0,433	30,9	831,1	67,6	3233	47,10	4,66
BatchID	•	12	1	1,333	0,587	31,2	835,9	78,7	3218	40,7	4,57
Time	•	13	1	1,455	0,82	30,9	826,7	78,9	3425	40,56	4,26
Ethanol	•	14	1	1,576	0,833	30,9	831,1	70,3	3303	40,94	4.1
Temp	. •	15	1	1,697	0,996	31,1	849,9	7,0	3665	41.01	3,86
Molass Feed NH3 Feed	•	16	1	1,818	1,433	31,1	900	98,4	3648	41,15	4,06
Air	•	17	1	1,939	1,456	31,2	1029	106,1	3717	41,03	3,83
Tank Level	•	18	1	2,061	1,909	30,9	1128,2	110.5	3857	41,07	3,81
pН	•	19	1	2,182	1,97	31,2	1181,2	122,2	3940	41,54	4,03
Validation 🕷	× •	20	1	2,303	2,269	311	1270,0	136,7	4076	41,4	3,91
	•	21	1	2,424	3,546	30,9	1334,1	138,7	4129	41,52	4,12
	•	22	1	2,545	4.20	31.2	1378,8	120	4324	41,47	4,17
	•	23	1	2,667	2,963	31	1451,8	158,8	4632	41,59	4,25
	•	24	1	2 7 38	,093	30,9	1448	132,9	4328	41,49	4,36
	•	25	1	2.005	3,096	31,1	1544,3	138	5244	41,68	4,7
	•	26		3,03	3,515	31	1596,7	144	5042	41,66	4,71
	•	27	1	3,152	3,077	30,9	1666,6	161,3	5358	42,23	4,77
Kows	•	28	1	3,273	4,256	31,1	1714,1	138,1	5378	41,94	4,79
lected	•	29	1	3,394	2,521	31	1693,4	151,3	6022	42,05	4,81
cluded (0	30	1	3,515	2,992	31,2	1818,4	141,3	6324	42,28	5,05
dden (• 0	31	1	3,636	3,24	30,9	1891,3	167	6018	42,34	5,31
abelled	•	32	1	3,758	1,996	31,1	1971,3	162,8	6001	42,31	5,12
	•	33	1	3,879	4,001	31,3	2084,1	176,7	6099	42,84	5,29

- There are 100 batches in total
- 100 time measurements per batch
- Measurements were taken at fixed time intervals

October 3-4-5 2018 Maison de la Chimie, Paris

• This isn't always the case!

INVESTIGATING INPUT FACTORS

Graph Builder Input factors over time for each batch BatchID Ethanol <u>-21</u> -41 11 -7 --22 -42 3. ·23 -24 34,0 31,5 29,0 26,5 Temp -25 -45 **—**26 **—**46 -27 -47 -28 -48 NH3 Feed Molasses Feed 3400 29 -49 2200 -30 -----50 1000 — 32 — 52 -12 700 -33 -13 450 200 -14 -15 -36 -56 15000 -16 Air 10000 5000 -19 Tank Level 58 -40 -60 -20 50 42 8,5 6,5 pН 4.5 1,5 2,0 5,5 9,0 9,5 10,5 11,5 3,0 4,0 4,5 6,57,0 8,0 0.0 0.5 Time

Plotting the factors over time for each batch reveals the complexity of the problem.

Non Clinical Statistics **October 3-4-5 2018**

Maison de la Chimie, Paris

INVESTIGATING INPUT FACTORS

Exploring batches individually further emphasizes the challenge ahead.

October 3-4-5 2018

Maison de la Chimie, Paris

Non Clinical

GOOD BATCHES VS BAD BATCHES

What we'll find:

Non Clinical

- 1) We can achieve a 74% Yield.
 -) Ethanol, Molasses, NH3 and Air are significant.
 - These are their ideal profiles:

October 3-4-5 2018

Maison de la Chimie, Paris

We could try to look for characteristics of good vs bad batches, but what defines "good?"

Can "good" be "better?"

DEALING WITH TELEMETRIC DATA (USING FDA)

Functional Data Analysis

Function Summaries											
BatchID	FPC 1	FPC 2	FPC 3	FPC 4	FPC 5	FPC 6					
1	580,57767	-267,7805	28,573012	147,18336	55,508213	-40,88853	1				
2	-286,5936	543,56012	-411,2534	-18,71583	28,023103	-16,11789					
3	310,61672	440,80251	-75,12021	34,650718	68,248024	95,491374					
4	610,62427	-295,9634	944,9418	178,77983	-154,218	18,311561					
5	613,31246	-357,7327	-124,0855	201,97364	147,03689	-145,2244					
6	-23,01349	459,66476	-167,9752	7,8868092	117,11506	110,54716					
7	453,57879	214,81655	-161,5337	37,1434	-84,7756	-1,366664					
8	1330,6241	-42,51764	-584,4787	26,178107	-153,5792	11,219651					
9	259,84521	471,10044	-617,4147	-38,18937	69,281452	92,57684					
10	1588,9261	-453,3788	395,10516	255,93291	135,0555	-1,14896					
11	-1829,969	986,67051	558,25093	-80,39355	-187,2943	-67,82698	4				

B-Spline on Initial data Model Controls **Model Selection** 170000 **************** Legend Legend 5000 1111 -Prediction -Step Functions 160000 4000 Knots -linear Molasses Feed -Quadratic **Reset Knots** 3000 -Cubic 150000 Update Models 2000 BIC 140000 1000 0 130000 -2 6 8 10 12 Time 120000 10 0 5 15 20 5500 mmm 2000 Number of Knots Fit Statistics 5500 1 m m m2000 Knots 20 Degree 3 5500 2000 -2 Log Likelihood 121241,96 M14 M15 AICc 121340,45 BIC 121693,27 GCV 0.0039495 Molasses Feed Std Dev 71.622308

October 3-4-5 2018 Maison de la Chimie, Paris

Functional PCA Percent Cumulative FPC Eigenvalue 20 40 60 80 1 1088713.1 56,1% 56,1% Weight 2 477300,89 24,6% 80,7% 189338,88 9,75% 90,4% 3 4 89394,683 4.6% 95% 5 35637,809 1,84% 96,9% 28947,867 1,49% 98,3% 6 -202468 12 -202468 12 12 12 -202468 12 -2024 68 -202468 -202468 12 Eigenfunction 1 Eigenfunction 2 Eigenfunction 3 Eigenfunction 4 Eigenfunction 5 **Eigenfunction 6**

Functional Data Analysis modeling for determining Functional Principal Components to be used in prediction.

SAVING FPC AND EIGENFUNCTIONS FOR EACH BATCH

Implementation Functional Data Explorer Model Summaries - JMP Pro

File Edit Tables Rows Cols DOE Analyze Graph Six Sigma Tools Tools Add-Ins View Window Help

1 📇 🍋 🎯 🕞 🛛 X ங 🛝 🗋 🖶 🖩 🖽 🛏 🗠 🎾 🖓

 Functional Data Explorer Model Summaries 	🖉 🗸 🤞 🚺 🖉						Ethanol Conditional Prediction		
Ethanol Profiler		BatchID	Ethanol FPC 1	Ethanol FPC 2	Ethanol FPC 3	Ethanol Prediction Formula	For		
Molasses Feed Profiler	1	1	2,4155685194	1,4995489133	1,0270177938	1,9598942389	Row	HC .	
NH3 Feed Profiler	2	2	0,7005936041	-0,550063784	0,4715307882	1,1180876582	C nom	3	
Air Profiler	3	3	3,6911395782	0,6056318535	-0,155438825	2,6547883929	All and	_	100
Tank Level Profiler	4	4	-0,798434767	-1,18839878	0,1601729046	0,6996648854	AILTOW	2	100
PH Profiler	5	5	2,5111343487	3,07066132	-1,415675273	4,0155,97708	🖉		
	6	6	-0,583879606	0,1348241684	0,251260622	1 818787882	1,0870497615	0,2475158195	
	7	7	1,6977923446	0,2221433381	-0,118824957	1,999430898	1,9800887507	0,2475158195	
Columns (65/0)	8	8	0.2124114397	1,1092600152	-0.64530489	2.270155477	2,1625643639	0.2475158195	
BatchID ?	^ 9	9	-1.257373464	-0.852258017	0.3390451599	0.6021230386	0.6665791279	0.2475158195	
Ethanol Summaries (3/0)	10	10	0.3903299285	1.308332551	-1.122298653	6716392178	2.7661067834	0.2475158195	
Ethanol Formulas (6/0)	11	11	-1 80180197	-0 52822257	0 4800 22394	0 5016051318	0 5467290018	0 2475158195	
Temp Summaries (3/0)	12	12	0.6329451087	1 6958431935	198707407	2 9188853074	3 3228637858	0 2475158195	
Temp Formulas (6/0)	12	12	-1.977006527	-1 11571915	-1.957149162	1 6386102115	0.0214525900	0.2475158105	
Molasses Feed Summaries (3/0)	14	14	0.6770854085	-2 1192 0201	-0.1.0765641	0.9109490266	0.0712040865	0.2475158195	$\sim M_{0}$ hours
NH3 Feed Summaries (3/0)	14	14	2 6270054400	-2,110,45201	0 101461744	2 0965902161	1 500 22 106 22	0.2475150195	
NH3 Feed Formulas (6/0)	13	10	2,0379034429	-1,27651072	-0,181401/44	2,0803803101	1,3883318023	0,2475156195	
Air Summaries (3/0)	10	10	-0,8218/1/0	-0,339,69324	0,1781499025	0,9956085726	1,158907/800	0,2475158195	
Air Formulas (6/0)	17	17	-1,344-0/43	7,605539661	0,2320145624	0,3691090365	0,409596513	0,2475158195	
Tank Level Summaries (3/0)	18	18	-2 12236011	-0,527501298	0,3481155538	0,3404156512	0,4285512681	0,2475158195	
Tank Level Formulas (6/0)	19	19	-1,55317273	-1,186012394	-1,206050629	1,3787056188	0,7924073891	0,2475158195	
PH Summaries (3/0)	20	20	-2,453130189	-0,691992224	0,4323613918	0,30901311	0,3063608401	0,2475158195	summaries (one
PH Formulas (6/0)	v 21	21	-2,541494364	-0,322227192	0,2868000364	0,5091287108	0,5680715444	0,2475158195	Summands (one
		22	0,3133760723	0,9422211726	-0,347383359	2,0562892589	1,99221005	0,2475158195	
Rows	23	23	1,4399605147	3,6033455728	-2,466907609	4,5725609215	4,5477493766	0,2475158195	for each hotah)
II rows 100	24	24	-1,733452855	-0,525439001	0,4484546564	0,5383937568	0,4635655665	0,2475158195	IUI Each Dalch)
	25	25	-2,588348331	-0,520338949	0,3722219005	0,3741590649	0,3537928918	0,2475158195	/
idden (0 26	26	4,4348491069	4,5623817553	0,2904183201	4,0184539137	3,0492926189	0,2475158195	
abelled (0 27	27	3 598074124	-2 202517544	0.9585601028	0 940789995	1 0054529234	0 2475158195	v
evaluations done		<						^	

ch batch)

October 3-4-5 2018 Maison de la Chimie, Paris

_ ×

Non Clinical Statistics Conference

MODELING WITH FPCS AS INPUTS

Actual by Predicted plot 0,65 0,6 Final Yield 0,55 0,5 0,45 0,45 0,5 0,55 0,6 0,65 Final Yield Prediction Formula

RSquare	0,733979
RSquare Adj	0,731265
Root Mean Square Error	0,020353
Mean of Response	0,53436
Observations (or Sum Wgts)	100

October 3-4-5 2018 Maison de la Chimie, Paris

rarameter Estimates for original redictors									
_			Wald	Prob > _					
lerm	Estimate	Std Error	ChiSquare	ChiSquare	Lower 95%	Upper 95%			
Intercept	0,53436	0,0020203	69956,999	<,0001*	0,5304003	0,5383197			
NH3 Feed FPC 2	-0,000173	2,4377e-5	50,628148	<,0001*	-0,000221	-0,000126			
Ethanol FPC 2	-0,012168	0,0018192	44,736472	<,0001*	-0,015733	-0,008602			
Molasses Feed FPC 2	0,0000244	4,0897 e -6	35,568946	<,0001*	1,6375e-5	0,0000324			
Air FPC 1	-2,63e-6	1,1457e-6	5,2684672	0,0217*	-4,875e-6	-3,842e-7			
Ethanol FPC 1	0	0	0	1,0000	0	0			
Ethanol FPC 3	0	0	0	1,0000	0	0			
Temp FPC 1	0	0	0	1,0000	0	0			
Temp FPC 2	0	0	0	1,0000	0	0			
Temp FPC 3	0	0	0	1,0000	0	0			
Molasses Feed FPC 1	0	0	0	1,0000	0	0			
Molasses Feed FPC 3	0	0	0	1,0000	0	0			
NH3 Feed FPC 1	0	0	0	1,0000	0	0			
NH3 Feed EDC 3	0	0	0	1 0000	0	0			

Parameter Estimates for Original Predictors

|--|

		Wald	Prob >
Estimate	Std Error	ChiSquare	ChiSquare
0,53436	0,0020203	69956,999	<,0001*
-0,000173	2,4377 e- 5	50,628148	<,0001*
-0,012168	0,0018192	44,736472	<,0001*
0,0000244	4,0897 e -6	35,568946	<,0001*
-2,63 e -6	1,1457e-6	5,2684672	0,0217*
	Estimate 0,53436 -0,000173 -0,012168 0,0000244 -2,63e-6	Estimate Std Error 0,53436 0,0020203 -0,000173 2,4377e-5 -0,012168 0,0018192 0,0000244 4,0897e-6 -2,63e-6 1,1457e-6	Estimate Std Error Wald ChiSquare 0,53436 0,0020203 69956,999 -0,000173 2,4377e5 50,628148 -0,012168 0,0018192 44,736472 0,0000244 4,0897e-6 35,568946 -2,63e-6 1,1457e-6 5,2684672

Non Clinical **Statistics** Conference

October 3-4-5 2018 Maison de la Chimie, Paris

Non Clinical Statistics

OPTIMAL YIELD RECIPE Optimizing the values of the FPCs to maximize Yield, we have everything needed to find the optimal profiles.

These profiles are predicted to result in a Yield of 74%.

October 3-4-5 2018 Maison de la Chimie, Paris

SUMMARY USING FUNCTIONAL DATA ANALYSIS FOR TIME-DEPENDENT OPTIMIZATION OF BATCH PROCESSES

- Using Functional Data Analysis over traditional methods, we can:
 - Dramatically reduce total time to meaningful results,
 - Utilize all data while preserving time-dependent info,
 - Generate more interpretable knowledge output,
 - Better engage with subject-matter experts.
- Question: Can you think of opportunities within your organization where you could apply this method?

son de la Chimie. Paris

Thanks for the support of my colleagues Phil Kay, Chris Gotwalt, and Malcolm Moore

