

NON CLINICAL STATISTICS CONFERENCE, LOUVAIN-LA-NEUVE 2022

INFERRING CAUSAL PATHWAYS FROM DATA

Stijn Vansteelandt, Ghent University, Belgium

joint work with Tyler VanderWeele, Rhian Daniel, Johan Steen, Thang Vo

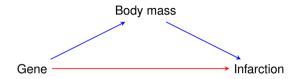
INTRODUCTION

INTRODUCTION

 There is longstanding interest in using data to gain insight into the mechanism that underlies the effect of an exposure on an outcome.

Mediation analyses are designed for this purpose.

PLEIOTROPY IN GENETIC ASSOCIATION STUDIES



Italian Genetic Study of Early-onset Myocardial Infarction

Does the FTO gene exert an effect on the risk of infarction that is unmediated by changes in body mass? How much of the genetic effect is mediated by body mass?

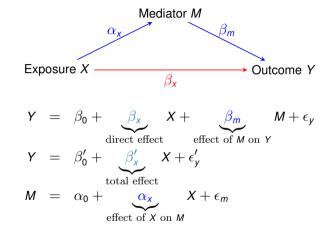
(Ardissino et al., 2011; Berzuini et al., 2012)

TRADITIONAL MEDIATION ANALYSIS

LOOKING BACK IN TIME...

- Mediation analysis has started to develop around the framework of path analysis and structural equation models. (Wright, 1934)
- Its development took off in the 80's since the seminal publication by Baron and Kenny (1986) in the psychological / sociological sciences.
- This framework dominates current practice.

MEDIATION ANALYSIS 1.0

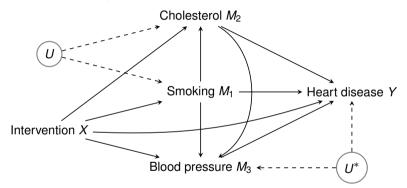


The indirect effect is commonly calculated as

$$\beta_x' - \beta_x = \alpha_x \beta_m$$

BUT... CONFOUNDING PATTERNS ARE COMPLICATED

Confounding is subtle, and not given due consideration.



Even in the absence of unmeasured confounding, many pathways cannot be identified.

```
(Avin et al., 2005; Daniel et al., 2017)
```

BUT... NON-LINEAR ASSOCIATIONS ARE NON-COLLAPSIBLE

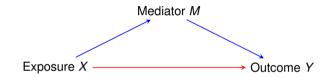
- Techniques for linear models need not carry over to non-linear models.
- Adding even independent variables to a non-linear model tends to change coefficients systematically.

Such non-collapsibility makes difference-of-coefficient methods problematic.

(Greenland, Robins and Pearl, 1998)

BUT... EFFECTS LACK INTERPRETATION

Product-of-coefficient methods are also problematic.



E.g. consider models

$$E(M|X) = \alpha_0 + \alpha_1 X$$

logit $P(Y = 1|X, M) = \beta_0 + \beta_1 X + \beta_2 M$

• How to interpret the product $\alpha_1\beta_2$ of a mean difference and a log odds ratio?

MEDIATION ANALYSIS 2.0

- The problem with traditional mediation analysis is that there is an abundance of estimation methods, but no understanding what they are estimating.
- In a revolutionary paper, Robins and Greenland (1992) identified these concerns and came up with direct and indirect effect estimands.
- This has led to a complete re-development on mediation analysis, which has taken off rapidly since 2010.

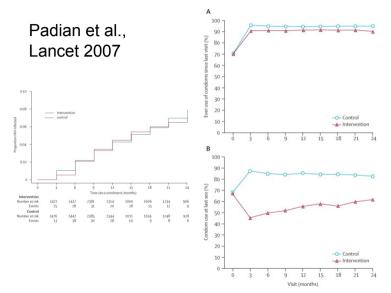
(Robins and Greenland, 1992; Pearl, 2001; Didelez et al., 2006; VanderWeele and Vansteelandt, 2009, 2010; Imai et al., 2010; VanderWeele, 2015)

Take home message

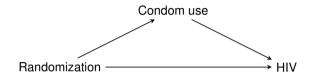
Modern mediation analysis techniques are applicable to non-linear models and careful about problems of confounding.

NATURAL DIRECT AND INDIRECT EFFECTS

COMPLICATIONS IN THE OPEN-LABEL MIRA TRIAL



INTEREST LIES IN THE DIRECT EFFECT = 'NET' EFFECT



direct effect = 'net' effect

What would have been the ITT effect

had condom use not been affected by the intervention?

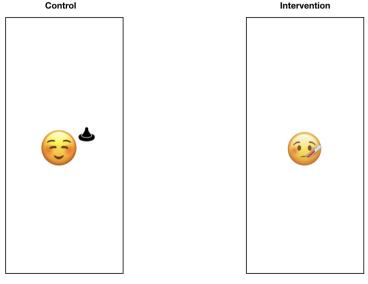
(Padian et al., 2007; Rosenblum et al., 2009)

How to formalise the notion of a direct effect?

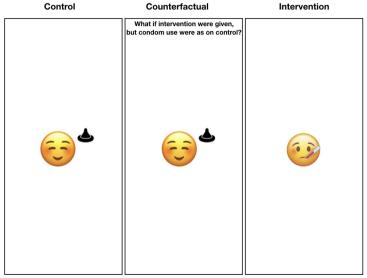
SUPPOSE WE RANDOMISE A GIVEN WOMAN TO CONTROL...

Control

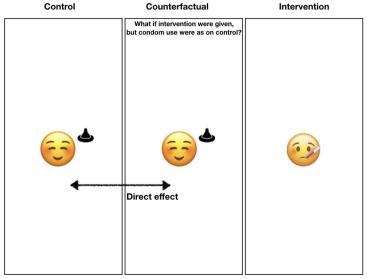
SUPPOSE WE RANDOMISE THAT WOMAN TO INTERVENTION...



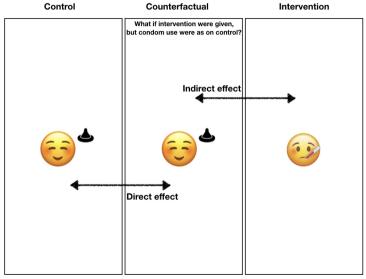
WHAT IF SHE HAD NOT CHANGED CONDOM USE ...?



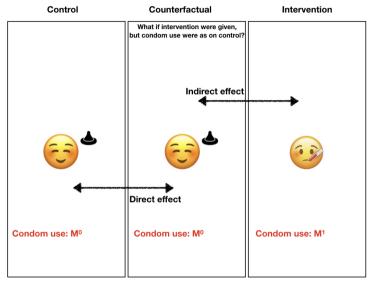
NATURAL DIRECT EFFECT



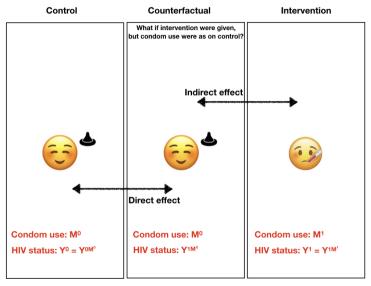
NATURAL INDIRECT EFFECT



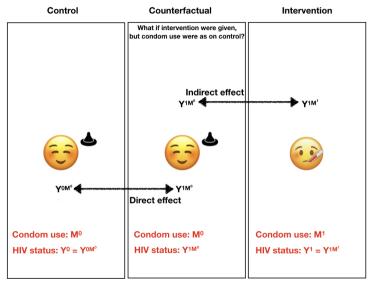
COUNTERFACTUAL DATA (1)



COUNTERFACTUAL DATA (2)



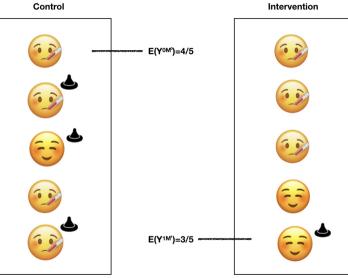
FORMAL DEFINITION OF NATURAL (IN)DIRECT EFFECT



SINGLE MEDIATION ANALYSIS

CONSIDER NOW A 'REAL' STUDY

Control



THE FUNDAMENTAL PROBLEM IN MEDIATION ANALYSIS

Control Intervention E(Y^{0M°})=4/5 E(Y^{1M⁰})? - -E(Y^{1M'})=3/5 --

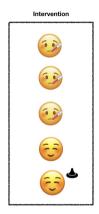
How to infer $E(Y^{1M^0})$?

Using the mediation formula.

(Pearl, 2001; VanderWeele and Vansteelandt, 2009, 2010)

- We do not observe M^0 for everyone.
- We will therefore 'stochastically' predict M⁰ using a prediction model for the 'untreated'.
- This model should adjust for confounding of the X-M association.

How to infer $E(Y^{1M^0})$?



- We next predict what outcome would be on treatment, at level M⁰.
- And then average these predictions.
- This is very flexible!
- Since we evaluate the effect of 2 interventions, setting treatment to 1 and mediator to M⁰, the prediction model must adjust for confounding of the X-Y and M-Y associations.
- Mediation analyses thus necessitate confounding adjustment, even in randomised experiments!

MEDIATION ANALYSIS USING MEDIATION

(Imai, Keele and Tingley, 2010)

```
> install.packages(mediation)
> library(mediation)
> r = mediate(mody, modm, mediator = "cont", treat = "mouldbin", sims =1000)
> summary(r)
```

Effect		Mean	[95% Conf.	Interval]	
		0047025	0020167	0000722	
ACME1		.0047935	.0030167	.0069733	
ACMEO	Ι	.0038464	.0023583	.0056088	
Direct Effect 1	Ι	.0237035	.0091926	.0382	
Direct Effect 0	Ι	.0227564	.0088654	.0368293	
Total Effect	Ι	.0275499	.0131839	.0417295	
% of Total via ACME1	Ι	.1750696	.1148706	.3635872	
% of Total via ACMEO	Τ	.14048	.0921748	.291751	
Average Mediation	Ι	.00432	.0026953	.0062752	
Average Direct Effect	Ι	.02323	.0090411	.0375581	
% of Tot Eff mediated	Ι	.1577748	.1035227	.3276691	

FITTING NATURAL EFFECT MODELS USING MEDFLEX

(Lange, Vansteelandt and Bekaert, 2012)

educM -0.212607

-0.277743

-0.007281

educH

age

```
> library(medflex)
> imp <- ne.impute(UPB ~ factor(attbin) + negaff + gender + educ + age,
  family = binomial. data = UPBdata)
> fit.ne <- ne.model(UPB ~ attbin0 + attbin1 + gender + educ + age,
  family = binomial, expData = impData, se = "robust")
> summary(fit.ne)
Natural effect model with robust standard errors based on the sandwich estimator
Exposure: attbin
Mediator(s): negaff
_ _ _
Parameter estimates:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.807111 0.829331 -2.179 0.029332 *
attbin01 0.907959 0.289594 3.135 0.001717 **
attbin11 0.376392
                      0.100549 3.743 0.000182 ***
genderM 0.227916
                      0.286977 0.794 0.427081
```

0.543467 -0.391 0.695645

0.553364 -0.502 0.615726

0.014894 -0.489 0.624928

TOO GOOD TO BE TRUE?

- We can never observe Y^{1M^0} .
- So how come we found a way to estimate $E(Y^{1M^0})$?
- It is because of implicit reliance on untestable assumptions.

```
(Robins and Richardson, 2010)
```

- In particular, that the *M*-*Y* association is unconfounded.
- The required no unmeasured confounding assumptions are somewhat stronger than ordinarily needed.
- Even if one had experimental data to learn the effect of *X* on *M* and of *M* on *Y*, confounding adjustment remains needed to combine these effects.
- The required assumptions also make extensions to multiple mediators subtle.

(VanderWeele T, Vansteelandt S. Mediation analysis with multiple mediators. Epidemiologic methods. 2014 Jan 3;2(1):95-115.)

LONGITUDINAL MEDIATION ANALYSIS

THE	LEAD	ER T	RIAL

Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes

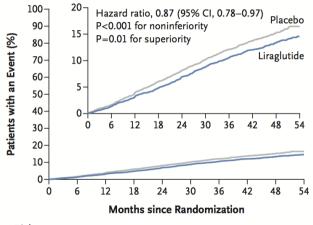
 Steven P. Marso, M.D., Gilbert H. Daniels, M.D., Kirstine Brown-Frandsen, M.D., Peter Kristensen, M.D., E.M.B.A., Johannes F.E. Mann, M.D., Michael A. Nauck, M.D., Steven E. Nissen, M.D., Stuart Pocock, Ph.D., Neil R. Poulter, F.Med.Sci., Lasse S. Ravn, M.D., Ph.D., William M. Steinberg, M.D., Mette Stockner, M.D., Bernard Zinman, M.D., Richard M. Bergenstal, M.D., and John B. Buse, M.D., Ph.D., for the LEADER Steering Committee on behalf of the LEADER Trial Investigators*

DESIGN OF THE LEADER TRIAL

- Population: patients with Type II diabetes and high cardiovascular risk.
- Liraglutide: once-daily injectable drug for the treatment of Type II diabetes, branded as Victoza or Saxenda.
- Primary endpoint: time from randomisation to first MACE (non-fatal stroke, non-fatal myocardial infarction or cardiovascular death).

PRIMARY ITT ANALYSIS

A Primary Outcome



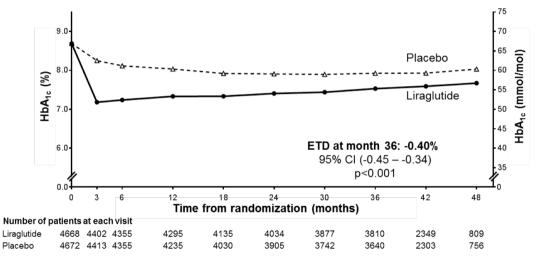
No. at Risk

Liraglutide	4668	4593	4496	4400	4280	4172	4072	3982	1562	424
Placebo	4672	4588	4473	4352	4237	4123	4010	3914	1543	407

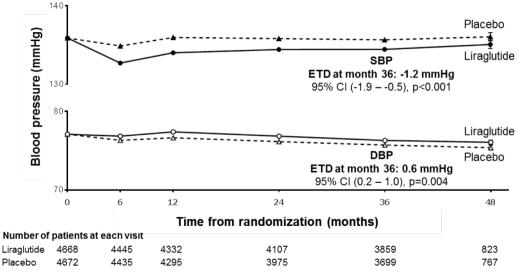
MECHANISM

- Significant reductions of major cardiovascular events, were also found in SUSTAIN-6 (semaglutide).
- The mechanism is not well understood, however.
- Aim: to develop insight into the precise mechanism whereby liraglutide treatment reduces the risk of MACE.

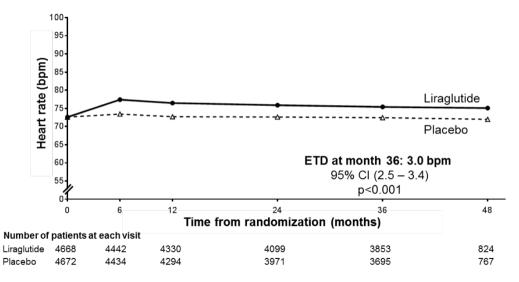
EFFECT ON GLYCATED HEAMOGLOBIN



EFFECT ON BLOOD PRESSURE

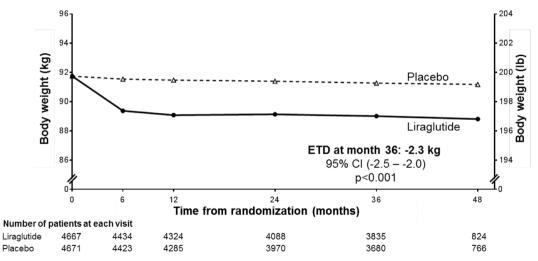


EFFECT ON HEART RATE

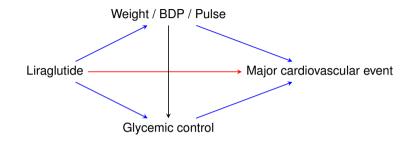


38/57

EFFECT ON BODY WEIGHT



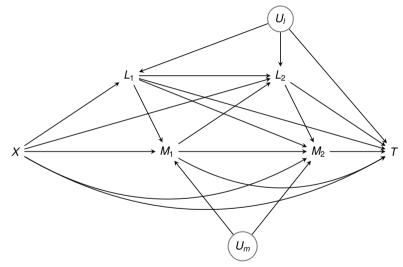
MECHANISM IN CLINICAL TRIALS



Key question

Why does liraglutide reduce the risk of major cardiovascular events?

WE ARE DEALING WITH A COMPLEX STRUCTURE...

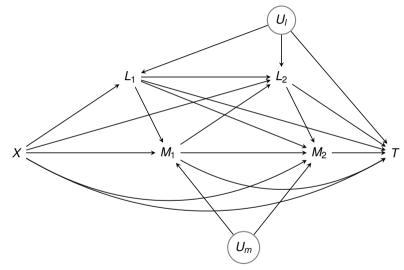


IT IS COMMON TO IGNORE THE LONGITUDINAL STRUCTURE

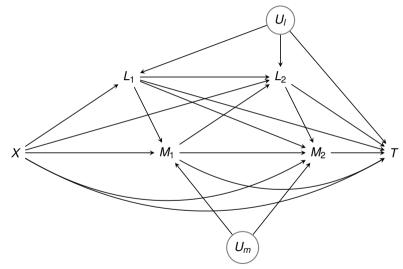
This induces bias.

- When considering the first realisation of the mediator, one risks to underestimate the indirect effect, by ignoring later realisations.
- When considering the last realisation or some AUC, there is a potential for bias due to reverse causality.
- Some patients experience the event before the mediator is assessed.
- Valid confounding adjustment becomes impossible.

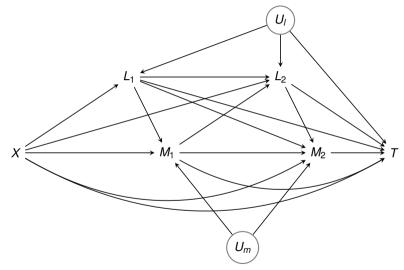
FEATURES: RANDOMISED TREATMENT



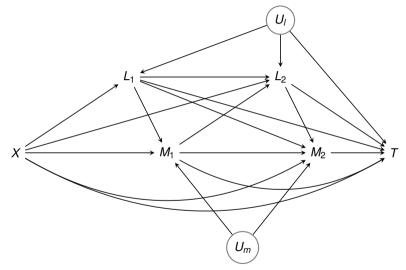
NO CONFOUNDING BY UNMEASURED VARIABLES



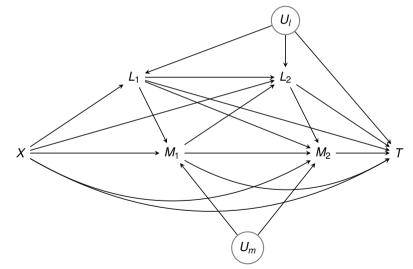
POSSIBILITY OF LAGGED EFFECTS



UNMEASURED COMMON CAUSES OF MEDIATORS/CONFOUNDERS

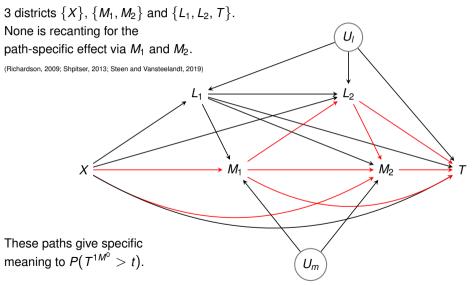


UNMEASURED CONFOUNDING OF COVARIATE - OUTCOME ASSOCIATION



47/57

MOST PATHWAYS NOT IDENTIFIED



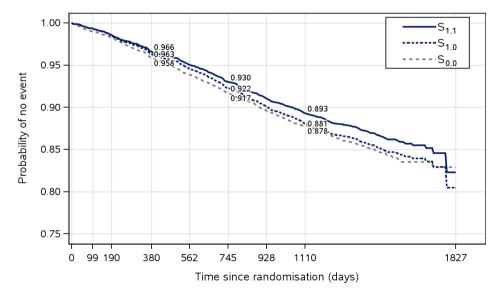
THE MEDIATIONAL G-FORMULA...

... works by simulating how the world would have looked like under the considered intervention.

Thus to estimate $P(T^{1M^0} > t)$ for $3 < t \le 6$:

- For each patient, based on his baseline covariates L₀, predict (randomly) whether he will survive 3 months on treatment.
- For each patient that was predicted to survive 3 months, predict (randomly) his covariate data L₁ on treatment as L₁¹ based on the observed data L₀.
- 3 For each such patient, predict (randomly) his mediator data M_1 on control as M_1^0 based on the observed data L_0 and the predicted data L_1^1 .
- For each such patient, predict (randomly) whether he will survive time *t* on treatment, based on the observed data L_0 and the predicted data L_1^1 and M_1^0 .
- 5 We then evaluate the percentage that survived time *t*.

RESULTS



NATURAL EFFECT MODELS

Alternatively, we can fit natural effect models.

(Lange, Vansteelandt and Bekaert, 2012; Vansteelandt, Bekaert and Lange, 2012)

These extend marginal structural models.

(Hernan, Brumback and Robins, 2001)

The hazard if 'exposure were set to a' and the 'mediators to the level at treatment a^{*}' can be parameterised using

$$\lambda^{a,a^*}(t) = \lambda_0(t) \exp(\alpha a + \beta a^*)$$
 for all t, a, a^*

(Vo, Davies-Kershaw, Hackett and Vansteelandt, 2020)

The direct effect is

$$\exp\left(\alpha\right) = \frac{\lambda^{1,0}(t)}{\lambda^{0,0}(t)}$$

and the indirect effect is

$$\exp\left(eta
ight)=rac{\lambda^{1,1}(t)}{\lambda^{1,0}(t)}$$

DUPLICATE - WEIGHT - ESTIMATE

Individual	Start	Stop	Status	A	A^*	M_t	M_{t-1}	L_t	L_{t-1}	L_0
1	0	1	0	1	1	0	0	0	0	<i>l</i> ₀₁
1	1	1.5	1	1	1	m_{11}	0	l_{01}	0	l_{01}
2	0	0.9	2	0	0	0	0	0	0	l_{02}
3	0	1	0	1	1	0	0	0	0	l_{03}
3	1	2	0	1	1	m_{13}	0	l_{13}	0	l_{03}
3	2	3	0	1	1	m_{23}	m_{13}	l_{23}	l_{13}	l_{03}
1	0	1	0	1	0	0	0	0	0	<i>l</i> ₀₁
1	1	1.5	1	1	0	m_{11}	0	l_{01}	0	l_{01}
2	0	0.9	2	0	1	0	0	0	0	l_{02}
3	0	1	0	1	0	0	0	0	0	l_{03}
3	1	2	0	1	0	m_{13}	0	l_{13}	0	<i>l</i> ₀₃
3	2	3	0	1	0	m_{23}	m_{13}	l_{23}	l_{13}	<i>l</i> ₀₃

> coxph(Surv(Start, Stop, Status) ~ A + A*, weights = w)

SUMMARY

- We have gone quite some way in making mediation analyses match the needs that practical applications pose.
- The assumptions are strong, and one must be cautious not to become overly ambitious.
- Currently, there is vigorous research on using machine learning methods to assist mediation analysis.
- Much work remains to be done,

both methodologically, as well as on implementation and application.

REFERENCES

Introductory:

Imai K, Keele L and Tingley D. A General Approach to Causal Mediation Analysis. Psychol Meth 2010.

Lange, T., Vansteelandt, S. and Bekaert, M. A simple unified approach for estimating natural direct and indirect effects. Am J Epidem 2012.

Pearl J. Direct and Indirect Effects. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, San Francisco, 2001.

Robins JM and Greenland S. Identifiability and exchangeability for direct and indirect effects. Epidemiology 1992.

VanderWeele TJ (2015). Explanation in Causal Inference: Methods for Mediation and Interaction. Oxford University Press.

VanderWeele TJ and Vansteelandt S. Conceptual issues concerning mediation, interventions and composition. Statistics and its Interface 2009.

VanderWeele TJ and Vansteelandt S. Odds Ratios for Mediation Analysis for a Dichotomous Outcome. Am J Epidem 2010.

On multiple mediators:

VanderWeele, T. and Vansteelandt, S. Mediation Analysis with Multiple Mediators. Epidem Meth 2013.

Steen, J., Loeys, T., Moerkerke, B. and Vansteelandt, S. Flexible mediation analysis with multiple mediators. Am J Epidem 2017.

Vansteelandt, S. and Daniel, R.M. Interventional effects for mediation analysis with multiple mediators. Epidemiology 2017.

On longitudinal / survival endpoints:

Vansteelandt, S., Linder, M., Vandenberghe, S., Steen, J. and Madsen, J. Mediation Analysis of Time-to-event Endpoints Accounting for Repeatedly Measured Mediators Subject to Time-varying Confounding. Statist Med 2019.

Vo, T. T., Davies-Kershaw, H., Hackett, R., and Vansteelandt, S. Longitudinal mediation analysis of time-to-event endpoints in the presence of competing risks. Lifetime Data Analysis 2022.

How to fit natural effect models? (1)

• When $a = a^*$ we have a standard marginal structural Cox model

$$\lambda^{a,a}(t) = \lambda_0(t) \exp \{(\alpha + \beta)a\}$$
 for all t, a

• The total effect $\alpha + \beta$ can thus be estimated by fitting this marginal structural Cox model.

That is, by fitting model

$$\lambda(t) = \lambda_0(t) \exp \{(\alpha + \beta)A\}$$
 for all t

to the observed data, inversely weighting the data by

$$W_A = rac{1}{P(A|L_0)}$$

Inverse probability of censoring weighting may be needed.

HOW TO FIT NATURAL EFFECT MODELS? (2)

■ If we weigh subject *i*'s contribution to the risk set at time *t* by

$$W_{M}(t) = \prod_{s:t_{s} \leq t} \frac{P(M_{s,i}|A = 1 - A_{i}, \overline{M}_{s-1,i}, \overline{L}_{s,i}, T \geq t_{s})}{P(M_{s,i}|A = A_{i}, \overline{M}_{s-1,i}, \overline{L}_{s,i}, T \geq t_{s})}$$

then we effectively change the mediator

to a draw from the mediator distribution at the opposite exposure level.

• We can thus with the natural effect model with $a^* = 1 - a$,

$$\lambda^{a,1-a}(t) = \lambda_0(t) \exp \{(\alpha - \beta)a + \beta\}$$
 for all t, a

by fitting the Cox model

$$\lambda(t) = \lambda_0^*(t) \exp \{(\alpha - \beta)A\}$$
 for all t

to the weighted risk sets, weighting the risk set at time t by

 $W_A \times W_M(t)$