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• Prior        , likelihood             , utility function 

• The utility function depends unknown model parameters and on data that has not yet been 
observed 

• Objective: Find design maximizing the expected utility (“averaging over what is unknown”)

• Examples
– Expected Kullback-Leibler divergence between posterior and prior: 

– Expected mean-squared error:

Bayesian Experimental Design
Maximizing expected utility
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Chaloner and Verdinelli (1995): Bayesian Experimental Design: A Review

(D-optimal)

(A-optimal)

(c-optimal)



Average posterior variance criterion (APVC)

Average coverage criterion (ACC)

Average length criterion (ALC)

Average posterior probability (APP) of detecting an 
effect of size at least      

Choose design that achieves a certain level of performance:

Bayesian Experimental Design
Controlling model performance criteria
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Gelfand and Wang (2002): A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models



Likelihood Simulated
Data Analysis Prior

Posterior

Performance criterion

Design Prior

Need fast way to sample 
from posterior and evaluate 
posterior density!

Bayesian Experimental Design
Monte-Carlo estimation
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Gelfand and Wang (2022): A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models



Conditional Normalizing Flows
Change of variables
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• Simple transformations as building blocks - each having a tractable inverse and 
Jacobian determinant – to define a complex transformation

Conditional Normalizing Flows
Composing simple transformations
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Papamakarios et al. (2019): Normalizing Flows for Probabilistic Modeling and Inference
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Conditional Normalizing Flows
Affine coupling transformations

7Dinh et al (2017): Density estimation using Real NVP

Jacobian of this transformation is lower triangular matrix

Computation of determinant in linear time          vs            for general             
matrices

Split input vector into two halfs, only scale and shift second half

Scale and shift can be arbitrary functions of the first half and the data



Conditional Normalizing Flows
Loss function
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Papamakarios et al. (2019): Normalizing Flows for Probabilistic Modeling and Inference
Radev et al. (2020): BayesFlow: Learning Complex Stochastic Models with Invertible Neural Networks

• Expected Kullback-Leibler divergence between true posterior and the flow-
based model

• Approximate loss function using a batch of samples from 

• Minimize the loss function iteratively with stochastic gradient-based methods



Training Phase
BayesFlow (Radev et al. 2020) 
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Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., & Köthe, U. (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. IEEE Transactions 
on Neural Networks and Learning Systems
https://github.com/stefanradev93/BayesFlow
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BayesFlow: Implementation of 
normalizing flows with affine 
coupling layers in Python using 
TensorFlow

The summary network transforms 
input data of variable size to a fixed 
length summary vector.
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Inference Phase
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Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., & Köthe, U. (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. IEEE Transactions 
on Neural Networks and Learning Systems

Forward Reverse

BayesFlow (Radev et al. 2020) 



Convergence Diagnostics

Recovery Simulation Based 
Calibration Calibration error
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Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., & Köthe, U. (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. IEEE Transactions 
on Neural Networks and Learning Systems
Talts, S., Betancourt, M., Simpson, D., Vehtari, A., & Gelman, A. (2018). Validating Bayesian inference algorithms with simulation-based calibration.

Histogram of rank statisticsPosterior means vs true 
parameters

Coverage probability of posterior 
credible intervals



Importance sampling
Flow-based posterior as proposal distribution

12Müller, T., McWilliams, B.,  Rousselle, F., and Gross, M. & Novak, J. (2019): Neural Importance Sampling. ACM Trans. Graph. 

– Flow-based posterior approximates the true posterior

– Finite training time         non-zero approximation error         biased estimates of 

– Importance weights:

– Unbiased estimates:

– Caveat: Density evaluation requires extra forward pass in addition to the reverse for sampling



• Pilot study comparing acid secretion after 
treatment with vehicle or GPR39 agonist

• Vehicle: 7 mice, Compound: 8 mice

• Use Stan to fit univariate two-sample 
normal model with heterogeneous variance 
with weakly informative priors.

• Use posterior as informative prior 
distribution
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Example
GPR39 data
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GPR39
Training
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• 6 affine coupling layers (3 
layers in BayesFlow)

• Default settings for summary 
network (invariant network 
that is well suited for iid 
observations)

• “Online” training: new 
dataset simulated at every 
iteration 

• Amortize over 
– sample size (Uniform[6, 100])
– allocation ratio (Uniform[0,1])



GPR39
Results
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Delta = 0.87

Alloc = 50%

N = 40

Alloc = 50%

N = 40

Delta = 0.87

Delta = 0.87

Alloc = 50%



Stan vs BayesFlow

TIME MCMC (Stan) BayesFlow
(CPU + GPU)

Training Time 0 33 min

Inference Time

Single Dataset 
(1000 posterior samples) 0.15s 0.002s

Single Design 
(1000 datasets) 150s 0.46s

Full evaluation 
(≈300 designs): 12.5h 138s

Total time (Training + Inference) 12.5h 35.3min

Timings for GPR39
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– Can examine large number of design scenarios in reasonable time

– Can use any model that can be easily sampled from (including models with an intractable 
likelihood)

– Training and inference phase are separated

– Issues:

• Numerical stability during training main problem: normalization is essential

• “Simulation gap”: amortized Bayesian methods might yield wrong posterior inference when used with 
observed data which is atypical under the assumed simulation model

• Hyperparameters: How many coupling layers? 

• Convergence checking: How much training is enough?

Conclusion
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