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Example data

Reference reaction experiments: IR spectral data

Trend data: univariate (single wavelength) baseline-corrected peak heights over time
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Example data

Reference reaction experiments: IR spectral data

Trend data: univariate (single wavelength) baseline-corrected peak heights over time
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Step 1: Kinetic model fitting

Workflow

1. Select parametric kinetic model based on goodness-of-fit criteria for individual trend model fits;

2. (Optional) normalize trends based on estimated intercept and asymptote parameters of individual model fits;

3. Conditional on selected kinetic model, fit a single Bayesian hierarchical (random effects) model to all replicated trends;

4. Sample posterior predicted trends from fitted Bayesian model to form a distribution of functional trends.
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Kinetic model fitting

Nonlinear random effects reaction models
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Step 2: Functional outlier detection

Workflow

1. Evaluate functional band depths (e.g. Sun and Genton, 2011 JCGA) and epigraph indices for all sampled trends (with respect to
the sampling distribution);
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Figure 1 from [Sun and Genton, 2011 JCGA]
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Step 2: Functional outlier detection

Workflow

1. Evaluate functional band depths (e.g. Sun and Genton, 2011 JCGA) and epigraph indices for all sampled trends (with respect to
the sampling distribution);

2. Construct outliergram visualization (Arribas-Gil and Romo, 2014 Biostatistics) by plotting band depth against epigraph index.
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Figure 3 from [Arribas-Gil and Romo, 2014 Biostatistics]
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Step 2: Functional outlier detection

Workflow

1. Evaluate functional band depths (e.g. Sun and Genton, 2011 JCGA) and epigraph indices for all sampled trends (with respect to
the sampling distribution);

2. Construct outliergram visualization (Arribas-Gil and Romo, 2014 Biostatistics) by plotting band depth against epigraph index.
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Step 2: Functional outlier detection

Workflow

1. Evaluate functional band depths (e.g. Sun and Genton, 2011 JCGA) and epigraph indices for all sampled trends (with respect to
the sampling distribution);

2. Construct outliergram visualization (Arribas-Gil and Romo, 2014 Biostatistics) by plotting band depth against epigraph index.
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Live fingerprinting application (R-Shin
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Live fingerprinting application (R-Shin
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Live fingerprinting application (R-Shiny)
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