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Imagine the start of a new collaboration...
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The scientists has asked you for a dose

response analysis.

Concentration
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The scientist has asked you for some
post-hoc estimates from the analysis.
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Concentration
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You're thinking...
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But wait, it is not as easy as you
thought...

Control

1 nM

Tumor Cells
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100 nM

Time
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The data collected from the assay needs
to be summarized (“flattened”) for a dose

response analysis.

100 nM

?

—)

6 nM

% Cytotoxicity

1 nM

Concentration
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In the next 10-12 minutes...
OUR GOAL:

1 Learn pragmatic approaches to “flatten” temporal assay data for
dose response modeling.

2 Determine how these approaches perform in a simulation study.

3 Use this knowledge to recognize the upstream consequences of
biases of these approaches.

We will end with a specific recommendation.
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The data can be “flattened” by ...

Cross-sectional

Control

Tumor Cells

Time
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The data can be “flattened” by ...

Cross-sectional
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The data can be “flattened” by ...

Cross-sectional

1 Treatment
Normalize to control Control
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The data can be “flattened” by ...

Cross-sectional

% Cytotoxicity
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An alternative approach to “flatten” the data

that does not discard data.
Area under the curve (AUC)

Control

Tumor Cells

Time
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An alternative approach to “flatten” the data

that does not discard data.
Area under the curve (AUQC)

Control ~/\/

Trapezoid rule

Tumor Cells

Time
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An alternative approach to “flatten” the data

that does not discard data.
Area under the curve (AUQC)

Control

Concentration
.{'—

AUC

s —
anssen Oncolo
J J oncology



An alternative approach to “flatten” the data

that does not discard data.
Area under the curve (AUQC)

Treatment

Control

Normalize to control
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An alternative approach to “flatten” the data

that does not discard data.
Area under the curve (AUQC)

% Cytotoxicity

Concentration
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Extending the AUC method to handle baseline

discrepancies.
Baseline adjusted AUC

Control
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Extending the AUC method to handle baseline

discrepancies.
Baseline adjusted AUC

Tumor Cells

Adjust for :

_ Tumor Cellsijme=0
baseline
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Extending the AUC method to handle baseline

discrepancies.
Baseline adjusted AUC

Control
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Extending the AUC method to handle baseline

discrepancies.
Baseline adjusted AUC
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Extending the AUC method to handle baseline

discrepancies.
Baseline adjusted AUC

Control
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Extending the AUC method to handle baseline

discrepancies.
Baseline adjusted AUC

: | Treatment
Normalize Control

to control
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Extending the AUC method to handle baseline

discrepancies.
Baseline adjusted AUC

% Cytotoxicity

Concentration
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Simulating the control data using a biological
model.

Gompertz Model

A
y = Yoexp {; (1- exp{—rt})}

Cells

Time
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Simulating the control data using a biological
model.

Cells

Time

Gompertz Model

A
y = Yoexp {; (1- exp{—rt})}
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Simulating the control data using a biological
model.

Cells

Time

Gompertz Model

A
y = Yoexp {; (1- exp{—rt})}
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Simulating the control data using a biological
model.

Cells

Time

Gompertz Model

A
y = Yoexp {; (1- exp{—rt})}
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Simulating the control data using a biological

model.

Cells
N
\o

Time

Gompertz Model

A
y = Yoexp {; (1- exp{—rt})}
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Introducing a drug into the system through a
link with the Gompertz model parameters.

Cells

Time

Change the initial proliferation
rate
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Introducing a drug into the system through a
link with the Gompertz model parameters.

Change the rate of decay of the
proliferation rate

Cells
(s

Time
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Introducing a drug into the system through a
link with the Gompertz model parameters.

Kill cells
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Introducing a drug into the system through a
link with the Gompertz model parameters.

Kill cells with drug resistance
. over time
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Some examples of simulated data.

Drug concentration
IO MO N1 10 M 100

1. Drug impacts proliferation

Tumor cells

Time
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Some examples of simulated data.

Drug concentration
IO MO N1 10 M 100

2. Drug impacts decay

Tumor cells

Time
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Some examples of simulated data.

Drug concentration
IO MO N1 10 M 100

3. Drug kills tumors

Tumor cells

Time
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Some examples of simulated data.

Drug concentration
IO MO N1 10 M 100

4. Drug Kills tumors with resistance

Tumor cells

|

Time
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All methods resulted in biased EC50
estimates.

m Cross sectional
m AUC
m Baseline adj. AUC

1. Drug impacts
proliferation

2. Drug impacts
decay

3. Drug kills tumors

4. Drug kills tumors
with resistance

True
. EC50
0.00 0.25 0.50 0.75 1.00
EC50
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Can we modify the different “flattening”
methods to decrease the bias of the EC50

estimate?

Cross sectional - log transform the measured responses.
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Can we modify the different “flattening”
methods to decrease the bias of the EC50

estimate?

AUC/Baseline adj. AUC - log transform AUC prior to normalization.
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Does including a logarithmic
transformation decrease the bias of the
EC50 estimate?

: True
: EC50

m Cross sectional 1. Drug impacts

m AUC proliferation
m Baseline adj. AUC

2. Drug impacts
decay

3. Drug kills tumors

4. Drug kills tumors
with resistance

0.00 0.25 0.50 0.75 1.00
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What is the impact of the logarithmic
transformation on the estimation of the
upper asymptote?

m Cross sectional 1. Drug impacts

m AUC proliferation
m Baseline adj. AUC

2. Drug impacts
decay

3. Drug kills tumors

4. Drug Kills tumors
with resistance

o5 50 75 100
Maximum Maximum

G_
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There are trade-offs when using the
logarithmic transformation.

All methods biased (EC50) on original data scale.
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There are trade-offs when using the
logarithmic transformation.

Cross sectional and AUC estimated of EC50 less biased on logarithmic
scale; however, max cytotoxicity extremely biased.
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There are trade-offs when using the
logarithmic transformation.

Baseline adj. AUC (with log-transformed AUC) balances the biases of
EC50 and max cytotoxicity.
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There are trade-offs when using the
logarithmic transformation.

Results hold when data simulated with random error.
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Reducing the bias of EC50 estimate is
important for upstream analyses.

Original

m Baseline adj. AUC meanR

maxR

meanR

maxR

Type | Error
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Take home messages...

Under simulation, log transformed AUC (adjusted for baseline) is the
best (as measured by EC50 and max cytotoxicity) method to use for
“flattening” temporal assay data in order to estimate dose response.

Bias in the EC50 estimate inflates type I error of meanR and maxR
statistic.
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