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Imagine the start of a new collaboration…
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The scientist performed an in-vitro 
experiment and would like you to analyze 
the data.

3



The scientists has asked you for a dose 
response analysis.
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The scientist has asked you for some 
post-hoc estimates from the analysis.
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You’re thinking…
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But wait, it is not as easy as you 
thought…
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The data collected from the assay needs 
to be summarized (“flattened”) for a dose 
response analysis.
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Learn pragmatic approaches to “flatten” temporal assay data for 
dose response modeling.

Determine how these approaches perform in a simulation study.

Use this knowledge to recognize the upstream consequences of 
biases of these approaches.

In the next 10-12 minutes…

OUR GOAL:

We will end with a specific recommendation.
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The data can be “flattened” by …

Cross-sectional
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An alternative approach to “flatten” the data 
that does not discard data.
Area under the curve (AUC)
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Extending the AUC method to handle baseline 
discrepancies.
Baseline adjusted AUC
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Gompertz Model

𝒚 = 𝒚𝟎𝒆𝒙𝒑
𝑨

𝒓
𝟏 − 𝒆𝒙𝒑 −𝒓𝒕

Simulating the control data using a biological 
model.
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Change the initial proliferation 
rate

Introducing a drug into the system through a 
link with the Gompertz model parameters.
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Change the rate of decay of the 
proliferation rate

Introducing a drug into the system through a 
link with the Gompertz model parameters.

32

Time

C
e
lls



Kill cells

Introducing a drug into the system through a 
link with the Gompertz model parameters.
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Kill cells with drug resistance 
over time

Introducing a drug into the system through a 
link with the Gompertz model parameters.
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Some examples of simulated data.
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Some examples of simulated data.
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Some examples of simulated data.
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All methods resulted in biased EC50 
estimates.
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Can we modify the different “flattening” 
methods to decrease the bias of the EC50 
estimate?

Cross sectional – log transform the measured responses.

AUC/Baseline adj. AUC – log transform AUC prior to normalization.
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Does including a logarithmic 
transformation decrease the bias of the 
EC50 estimate?
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What is the impact of the logarithmic 
transformation on the estimation of the 
upper asymptote?
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There are trade-offs when using the 
logarithmic transformation.

All methods biased (EC50) on original data scale.

Cross sectional and AUC estimated of EC50 less biased on logarithmic 
scale; however, max cytotoxicity extremely biased.

Baseline adj. AUC (with log-transformed AUC) balances the biases of 
EC50 and max cytotoxicity.

Results hold when data simulated with random error.

44



There are trade-offs when using the 
logarithmic transformation.

All methods biased (EC50) on original data scale.

Cross sectional and AUC estimated of EC50 less biased on logarithmic
scale; however, max cytotoxicity extremely biased.

Baseline adj. AUC (with log-transformed AUC) balances the biases of 
EC50 and max cytotoxicity.

Results hold when data simulated with random error.

45



There are trade-offs when using the 
logarithmic transformation.

All methods biased (EC50) on original data scale.

Cross sectional and AUC estimated of EC50 less biased on logarithmic 
scale; however, max cytotoxicity extremely biased.

Baseline adj. AUC (with log-transformed AUC) balances the biases of 
EC50 and max cytotoxicity.

Results hold when data simulated with random error.

46



There are trade-offs when using the 
logarithmic transformation.

All methods biased (EC50) on original data scale.

Cross sectional and AUC estimated of EC50 less biased on logarithmic 
scale; however, max cytotoxicity extremely biased.

Baseline adj. AUC (with log-transformed AUC) balances the biases of 
EC50 and max cytotoxicity.

Results hold when data simulated with random error.

47



Reducing the bias of EC50 estimate is 
important for upstream analyses.
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Take home messages…

Under simulation, log transformed AUC (adjusted for baseline) is the 
best (as measured by EC50 and max cytotoxicity) method to use for 
“flattening” temporal assay data in order to estimate dose response.

Bias in the EC50 estimate inflates type I error of meanR and maxR
statistic.
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