Process characterization: Correlation structure between two Critical Quality Attributes when there are multiple measurements per condition

Jean-François Michiels | Associate Director Statistics | Pharmalex

21 Oct 2022

+ 134:23 454:12

23 35 60

Illustrative example

- Characterization of a powder/tablet manufacturing process
- ► CPPs:
 - milling time (3 levels)
 - milling volume (2 levels)
- CQAs:
 - Particle Size Distribution (PSD) 3 measurement per batch
 - Dissolution 6 measurements per batch
- > 3 batches per manufacturing condition
- Model: Main effects and interactions

Data (Batch are colored within each manufacturing condition)

► PHARMALEX

© PharmaLex

- Within a single set of manufacturing conditions, a negative correlation is observed between batch
 - If psd is increasing, dissolution is decreasing

PHARMALEX

Error-in-variables regression

- Using the average of the data (mean of 6 and 3 values respectively for dissolution and psd)
- Variance ratio is estimated from the data
- This approach makes difficult to interpret the effects of CPPs on both CQAs

► PHARMALEX

Bi-response model on average data

- Based on average data
- A single value per batch
- Residual error includes mostly batch-to-batch variability
- The correlation between residuals is estimated

form <- bf(mvbind(disso,psd)~Mil_Time+Mil_Vol+Mil_Time:Mil_Vol) + set_rescor(TRUE) fit2 <- brm(form, data=sim4,warmup=3000,thin=5,iter=15000,chains=3)

Results of the average model

Population-Level Effects:

•	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
disso_Intercept	11.83	0.30	11.22	12.43	1.00	6792	6797
psd_Intercept	7.84	0.23	7.39	8.30	1.00	6668	6629
disso_Mil_Time	0.93	0.06	0.82	1.05	1.00	6709	6791
disso_Mil_Vol10	0.46	0.43	-0.39	1.33	1.00	6436	6824
disso_Mil_Time:Mil_Vol10	-0.05	0.08	-0.21	0.12	1.00	6517	6301
psd_Mil_Time	-0.28	0.04	-0.36	-0.19	1.00	6629	6736
psd_Mil_Vol10	0.12	0.33	-0.52	0.76	1.00	6588	6922
psd_Mil_Time:Mil_Vol10	-0.06	0.06	-0.18	0.06	1.00	6619	6889

Family Specific Parameters:

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sigma_disso	0.27	0.06	0.18	0.41	1.00	6539	6511
sigma_psd	0.21	0.04	0.14	0.32	1.00	6701	7003

Residual Correlations:

	Estimate	Est Error	1_95% CT	11-95% CT	Phat	Bulk ESS	Tail ESS	
								٦
rescor(disso,psd)	-0.54	0.19	-0.83	-0.09	1.00	6297	6625	
• • • •								

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

► PHARMALEX

► PHARMALEX

© PharmaLex

Bi-response model with individual data

- Performed in Stan (rstan v2.26)
- Several value per batch → random batch effect is possible
- Correlation is set on the batch variability between the two responses

```
transformed parameters{
```

```
matrix[2,2] sigma_matrix;
```

```
sigma_matrix[1,1] = sigma_b_disso*sigma_b_disso;
sigma_matrix[2,2] = sigma_b_psd*sigma_b_psd;
```

```
sigma_matrix[1,2] = corr*sigma_b_disso*sigma_b_psd;
sigma_matrix[2,1] = corr*sigma_b_disso*sigma_b_psd;
```

```
model {
    // vector definitions
```

```
for(j in 1:N){
for(i in 1:6){
Y[j, i] ~ normal(beta_disso[1] +
beta_disso[2]*Mil_Time[j] +
beta_disso[3]*Mil_Vol10[j]+
beta_disso[4]*Mil_Time_Mil_Vol10[j]+
a_batch[Batch[j],1],
sigma_disso);
```

```
for(i in 7:9){
// similar to the psd model
}
```

```
}
```

a_batch ~ multi_normal(a_0,sigma_matrix); //other prior definitions

Results of the model with individual data

Inference for Stan model: anon_model.
3 chains, each with iter=8000; warmup=3000; thin=2;
post-warmup draws per chain=2500, total post-warmup draws=7500.

	mean	se_mean	sd	2.5%	50%	97.5%	n_eff	Rhat
beta_disso[1]	11.829	0.006	0.295	11.237	11.826	12.400	2599	1.000
beta_disso[2]	0.933	0.001	0.056	0.825	0.933	1.045	2648	1.000
beta_disso[3]	0.458	0.008	0.406	-0.329	0.454	1.271	2693	1.001
beta_disso[4]	-0.047	0.001	0.077	-0.201	-0.047	0.105	2770	1.001
beta_psd[1]	7.842	0.004	0.220	7.407	7.843	8.286	2887	1.001
beta_psd[2]	-0.278	0.001	0.042	-0.362	-0.279	-0.197	2883	1.001
beta_psd[3]	0.122	0.006	0.312	-0.497	0.125	0.724	3005	1.000
beta_psd[4]	-0.061	0.001	0.059	-0.176	-0.061	0.055	3031	1.000
sigma_disso	0.237	0.000	0.018	0.205	0.236	0.275	6638	1.000
sigma_b_disso	0.245	0.001	0.060	0.154	0.236	0.387	4465	1.000
sigma_psd	0.171	0.000	0.021	0.136	0.169	0.217	5189	1.000
sigma_b_psd	0.170	0.001	0.050	0.090	0.165	0.283	3560	1.000
corr	-0.666	0.004	0.225	-0.969	-0.710	-0.119	2514	1.001

Samples were drawn using NUTS(diag_e) at Wed Oct 12 11:10:03 2022. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

Correlation is better estimated

Total variability from average data is consistent with the sum of the model with individual data For psd: Sqrt(0.171^2+0.170^2)=0.241

Average model was equal to 0.21

95% PI using the model with individual data

Note: This is the PI of the average values to make it comparable to the results of the average model

► PHARMALEX

Probabilities of success

- Assuming specs
 - For disso: [15,20]
 - For psd: [6,10]
- Probabilities of success for all 6 disso and 3 psd values to be within specs

Milling Time	Milling Vol	PoS disso	PoS psd
3	2	2.3	100.0
5	2	99.9	90.7
7	2	100.0	14.2
3	10	12.9	99.8
5	10	100.0	70.9
7	10	99.9	1.4

Conclusions

- Average model and model using individual data are consistent
- Advantages of model using individual data (over average model) makes possible
 - To fit a mixed model and obtain individual replicate variance information
 - To obtain better correlation estimates
 - To obtain the posterior predictive distribution of individual data
 - To get the probabilities of success for any result format (e.g. control strategy)