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Drug-induced Liver Injury (DILI)
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L 1 The liver plays a central role in transforming
) and clearing chemicals and
is susceptible to the toxicity

k} from these agents (Wikipedia!).
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= After Cardiotoxicity, DILI is the second

leading reasons for drug-withdrawal.
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Fail Early, Fail Cheap!
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DILI predictive modelling

It is difficult!

Small number of compounds with known clinical DILI severity class
Unknown and/or multifaceted mechanisms
Systematically biased set of compounds (all already approved by FDA)
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DILI predictive modelling

It is difficult!

Small number of compounds with known clinical DILI severity class
Unknown and/or multifaceted mechanisms
Systematically biased set of compounds (all already approved by FDA)

Consequence: Al/ML Magic Fails!

Identify possible DILI predictors.
Use already approved and validated Al/ML methods to predict them.
Build a predictive model based on them.
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DILI severity classification

Chen et al. (2016) used FDA approved drug labels to classify compounds
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Selected compounds
194 No DILI-concern, 245 Less DILI-concern, and 164 Most DILI-concern
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Physico-chemical properties

Physico-chemical properties
are among the ever-present
descriptors of DILI.
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Predicted off-targets

Transcriptomics gained less attention.

Based on Rao et al. (2019), Al/Ml models were produced using more than 21
million small molecules and six different methods to predict interactions with
~6000 human genes fully in Silico.

We have identified 1666 unique targets; and 161 that could significantly
separate No from Most DILI-concern.
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Predicted off-targets v.s. DILI
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Model building

Begin with (1666+25) predictors.

Variable selection: a LASSO logistic regression together with expert
knowledge.

Prediction: quantify the DILI risk in terms of (pseudo-)probability of Most
DILI-concern using:

® Ridge logistic regression
® Neural network
® Random forest
® Support vector machines
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Model building

Single Probability Score:.

* A weighted average (using accuracies from 10-fold CV as weights):
ScoreWA = WlR[_R =+ W2NN + W3RF + W45VM,

® Ensemble learning (using a penalized logistic regression equation):
Scoreg; = m, where s = 8y + B1RLR + B2 NN + B3RF + 3,SVM.

Class Prediction: Score > 0.6 = DILI+.
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Kinases
Enzymes

Nuclear Receptor
GPCR
Transporter

Cytochrome(s)

Explainable

OX, but also Explained

Select Key Off-Target Biology

VEGFR1, ABL1, RET, AURKA and FYN
COX1, COX2, AKRIC3 and XDH

AR, PPARG and RXRA

DRD2, OPRL1, OPR, CHRM, HTR2, HRH1 and ADRA2
SLC22A12 & SLCEA4

Cyp1A2 and Cyp2C9

Chemical Properties
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Performance

Method Sensitivity Specificity PPV~ NPV~ LR+  Accuracy
Penalized logistic regression 0.658 0.912 0.872 0.765 8.197 0.796
Neural network 0.689 0.891 0.848 0.775 7.406  0.798
Random forest 0.598 0.907 0.850 0.731 7.056 0.763
Support-vector machine 0.698 0.877 0.832 0.779 7.008 0.796
Weighted average 0.694 0.907 0.866 0.784 8.341 0.821
Ensemble learning 0.732 0.897 0.862 0.804 8.064 0.809
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Predicting Less DILI-concern
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Predicting Less DILI-concern

DILI score  Warnings and precautions
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>0.6
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Retrospective prediction

Drug Mode of Action  DILI score Predicted risk class ~ Status for Findings

Entacapone COMT 0.91 High Risk Less DILI concern

Thelin ETA 0.67 Moderate Risk Hepatobiliary disorder in clinic
Macitentan ETA 0.61 Moderate Risk ALT, AST increased in Post marketing
Ambrisentan  ETA 0.23 No Risk High risk

LY-2409021 GCGR 0.82 High Risk Transaminase elevation in clinic
MK-0893 GCGR 0.67 Moderate Risk Transaminase elevation in clinic
PF-05020182 KCNQ1 0.23 No Risk High risk

Flupirtine KCNQ1 0.69 Moderate Risk Warning with precaution- Most DILI
PF-04895162 KCNQ1 0.78 High Risk Terminated at clinical development
Montelukast ~ LTD4 0.91 High Risk Marketed with DILI warning
Verlukast LTD4 0.91 High Risk Terminated at clinical development
CP-85958 LTD4 0.55 Moderate Risk Terminated at clinical development
Pioglitazone PPAR 0.75 High Risk Warning with precaution
Rosiglitazone  PPAR 0.94 High Risk Warning with precaution
Ciglitazone PPAR 0.77 High Risk Terminated at clinical development
Englitazone PPAR 0.57 Moderate Risk Terminated at clinical development
Fasiglifam GPR40 0.84 High Risk Terminated due to DILI
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Threshold selection

Measure
— Sensitivity

- Specificity

0.00 0.25 050 075 1.00
Threshold
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Cross-validation

Split the 358 compounds randomly into k chunks of roughly equal sizes.
For iFold from 1 to 10
® Predict the compounds in chunk iF old using all the compounds in 9 remaining
chunks,
® Compute and store performance measures for these predictions.
Compute and store mean of 10 computed performance measures Repeat
steps 1-3, 100 times
Report the median of mean
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