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Introduction

This is joint work with Annelies Tourny, Bie Verbist, Stijn
Hawinkel, Maxim Nazarov, Kathy Mutambanengwe and Luc
Bijnens.

This talk is based on

Van der Borght, K., Tourny, A., Bagdziunas, R., Thas, O.,
Nazarov, M., Turner, H., ... and Ceulemans, H. (2017).
BIGL: Biochemically Intuitive Generalized Loewe null
model for prediction of the expected combined effect
compatible with partial agonism and antagonism. Scientific
reports, 7(1), 1-9.
Thas, O., Tourny, A., Verbist, B., Hawinkel, S., Nazarov, M.,
Mutambanengwe, K. and Bijnens, L. (2022). Statistical
detection of synergy: New methods and a comparative
study. Pharmaceutical Statistics, 21(2), 345-360.
The BIGL R package.
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Introduction

Combination therapies are therapies in which two or more
drugs are combined.

It is increasingly adopted as standard of care for various
diseases, e.g. tuberculosis, malaria, HIV, and many advanced
cancers.

Advantages:

improve treatment response
minimize development of monotherapy resistance
sometimes lower doses are possible (avoiding intolerable
dose ranges), hence reducing side-effects
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Introduction

Drug combinations are screened early in the drug development
process for synergistic effects, for example with a checkerboard
design.
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Introduction

But what is synergism?

We start with defining aditivity of two drugs.
Dose additivity: for resulting in the same response,
dAB = dA + dB.

Hernández, Gil and Lacasaña. Archives of Toxicology (2017)
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Introduction

Many models for additivity have been proposed: null models.

These models are often

mechanistically inspired
biochemically interpretable
based on the monotherapeutic dose-response curves

These null models

give the expected outcome f(d1, d2) under additivity when
drugs 1 and 2 have doses d1 and d2

depend on the monotherapeutic dose response curves,
f(d1, 0) and f(0, d2).

Later in this talk, we discuss several null models.
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Introduction

Monotherapeutic dose-response curves

Van der Borght et al. Scientific Reports (2017)

The expected outcome f at dose d is modelled by the Hill eq.,

f(d;β) = f0 +
(fmax − f0) d

h

ECh
50 + dh

with βt = (fmax, f0, h,EC50).
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Introduction

Parameters of the two dose-response models are estimated by
means of least squares.

With Yij the observed outcome of drug j = 1, 2 with dose di,
i = 1, . . . , nj ,

Yij = f(di;βj) + εij

with E {εij} = 0 and Var {εij} = σ2
0j .

The least squares parameter estimates are denoted by β̂j .
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Introduction

Some more dose-response terminology.

Thas et al. Pharmaceutical Statistics (2022)
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Introduction

Later in this presentation:

1 some null models
2 statistical methods for detecting synergism
3 a comprehensive comparative simulation study
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Null Models

Bliss independence

f(d1, d2) = f1(d1) + (1− f1(d1)) f2(d2)

= f1(d1) + f2(d2)− f1(d1)f2(d2)

adopts probabilistic perspective
equals sum of independent drug responses minus their
joint effect under additivity (cfr. stochastic independence)
assumes independent sites of action of the two compounds
model can be adapted to allow for partial responders
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Null Models

Classical Loewe independence

d1

f−1
1 (f12(d1, d2))

+
d2

f−1
2 (f12(d1, d2))

= 1

assumes a constant potency ratio of the two compounds
model can be adapted to allow for partial responders
(based on the concept of occupancy)
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Null Models

Highest Single Agent (HSA

f(d1, d2) = max(f1(d1), f2(d2))
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Null Models

Loewe2: an alternative generalisation of Loewe

combination of classical Loewe and HSA
classical Loewe only works if f0 ≤ f12 ≤ min(fmax,1, fmax,2)

If e.g. f12 > fmax,1 we now set f−1
1 (f12) = +∞.

This results in f12 = f2(d2), mimicking the HSA approach.
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Testing for Synergy

Recall that we have observations from several combination
therapies (e.g. checkerboard design).
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At each off-axis we have possibly replicated outcomes:

Yik at doses d1ik, d2ik

with

i = 1, . . . , n1: off-axis point
k = 1, . . . ,mi: replicate
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Testing for Synergy

The overall approach that we take is by looking at the mean
residuals at the off-axis points,

Ei = Ȳi − f(d1i, d2i; β̂) = Ȳi − f̂(d1i, d2i)

Van der Borght et al. Scientific Reports (2017)
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Testing for Synergy

We will present several versions of the MeanR and MaxR tests.

The variance-covariance matrix of the vector of the mean
residuals, Et = (E1, . . . , En1):

ΣE = Var {E} = σ2
0C + σ2

1D,

with

σ2
0 the residual variance on the on-axis points

σ2
1 the residual variance on the off-axis points

D a diagonal matrix with on the diagonal (1/m1, . . . , 1/mn1

C the variance-covariance matrix of the vector of
predictions (f̂(d11, d21), . . . , f̂(d1n1 , d2n1))
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Testing for Synergy

Suppose we have an estimator of ΣE , say Σ̂E , then we
construct two test statistics for testing the null hypothesis

H0 : E
{
Ȳi
}
= f(d1i, d2i) for all i.

MeanR:
TMeanR = EtΣ̂

−1
E E

MaxR:
TMaxR = max

i

∣∣∣(EtΣ̂
−1/2
E

)
i

∣∣∣
The advantage of MaxR, is that at rejection of H0, the individual(
EtΣ̂

−1/2
E

)
i

can used for identifying the off-axis points i at
which there is a significant deviation from additivity.
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Testing for Synergy

The advantage of MaxR, is that at rejection of H0, the individual(
EtΣ̂

−1/2
E

)
i

can used for identifying the off-axis points i at
which there is a significant deviation from additivity.
(union-intersection test)
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Testing for Synergy

The estimation of ΣE depends on the assumptions we are
willing to make:

equal variance on all on-axis and off-axis points:
σ2
0 = σ2

1

equal variance on all on-axis and off-axis points,
separately:
σ2
0 ̸= σ2

1

mean-variance relation for the off-axis points:
σ2
1(d1, d2) = β0 + β1f(d1, d2)
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Testing for Synergy

Equal variance on all on-axis and off-axis points:

σ̂2
0 = σ̂2

1 = MSE0 from fits of Hill equations

This may not be optimal, as the off-axis point observation are
not used for the estimation.

The initial motivation was that the MeanR test statistic has a
conventient F null distribution under the normality assumption,

TMeanR
H0∼ Fn1,q,

with q the degrees of freedom of MSE0.

However, we recommend a bootstrap procedure for
enumerating the null distributions.
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Testing for Synergy

Equal variance on all on-axis and off-axis points, separately:

σ̂2
0 = MSE0 from fits of Hill equations

and

σ̂2
1 =

1

n1

n1∑
i=1

S2
i

with S2
i the sample variance of the ni replicates Yik at off-axis

point i.

The null distributions are obtained by a bootstrap procedure,
consiting of seperately resampling residuals for the on and off
axis points.
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Testing for Synergy

Mean-variance relation for the off-axis points:

The parameters of the variance model

σ2
1(d1i, d2i) = Var {Ei} = β0 + β1f(d1i, d2i)

are obtained by regressing S2
i on f̂(d1i, d2i) (least squares).

With σ̂2
1(d1i, d2i) the predictions from the model fit, we construct

V = diag(σ̂2
1(d11, d21), . . . , σ̂

2
1(d1n1 , d2n1))

and use
Σ̂E = σ̂2

0C + V ,

The null distributions are obtained by a bootstrap procedure,
consiting of separately resampling residuals for the on and off
axis points.
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Simulation Study

Objective
evaluate MeanR and MaxR tests in terms of

type I error rate and power (for MeanR)
FWER and sensitivity (for MaxR)

under various scenarios: combinations of
null model for predicting additive effects
synergistic effects

we hope to find a null model that gives good results under
all scenarios (even when null model is misspecified)
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Simulation Study

Data simulation framework:

Start from real datasets (checkerboard designs) for
estimating the parameters of the two monotherapeutic
dose-response curves:

template 1: two full responders
template 2: a full and a partial responder

Thas et al. Pharmaceutical Statistics (2022)
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Simulation Study

Simulate data from a Data Generating Model (DGM):
combination of two fitted monotherapeutic dose-response
curves
estimate expected outcomes f(d1i, d2i) for on and off axis
points i (checkerboard design), based on a null model
add synergistic effects at some of the off-axis points i (see
later):

Y ∗
ik = f̂(d1i, d2i) + δik

with
δik ∼ N(∆i, σ

2
1(d1i, d2i))

and ∆i the synergistic effect size at point i.

Perform MeanR and MaxR at the 5% significance level
according to different null models (Data Analysis Models
(DAM)).
compute FWER, power (of MeanR) and sensitivity (of
MaxR)
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Simulation Study

Overview of the 7 scenarios
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Simulation Study

Results for Scenario 1

Olivier Thas 28



Simulation Study

All results: see online suppl. mat. of Thas et al. (2022)
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Simulation Study

Some conlcusions:

meanR and maxR control type I error rate and FWER
when DAM=DGM
when DAM̸=DGM, tests are often slightly liberal

DAM=HSA: tests are more liberal under model
misspecification
DGM=HSA: too many antogonism calls when DAM̸=HSA

Left: all calls - Right: only synergy calls
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Simulation Study

sensitivity of maxR is not much affected by choice of DAM,
but for DAM=HSA, the test becomes liberal
outliers are detrimental (too many false calls)
Partial or incomplete dose-response curves:

no serious effect on type I error rate , FWER, power or
sensitivity
incomplete curves can result in imprecise parameter
estimates of dose-response curves

Deviation from constant variance:
New methods perform better than the original methods
New bootstrap method helps, but still no good FWER
control for MaxR
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Simulation Study

Some recommendations:

Report outliers
Perform visual assessment of fit of monotherapeutic
dose-response curves
Model variance heterogeneity (only if necessary), and use
the new bootstrap procedure
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Effect Size

Hypothesis tests may have some drawbacks:

they are often interpreted as a binary decision
they do not provide information on the relevance of the
synergistic effect
their results may strongly depend on the sample size

It is good statistical practice to also report effect size estimates.

We propose two effect sizes:

pointwise: δi = E {Yik} − f(d1i, d2i)

average: ∆ = 1
n1

∑n1
i=1 δi
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Effect Size

The effect sizes can be estimated:

δ̂i =
1
mi

∑mi
k=1

(
Yik − f̂(d1i, d2i)

)
∆̂ = 1

n1

∑n1
i=1 δ̂i

We have developed bootstrap procedures for the construction
of confidence intervals.

This research is still ongoing.
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Simulation Study: effect size

The coverage of the effect size confidence intervals (nominal
coverage of 95%) have been (are being) evaluated under the
same scenarios as the tests.

Scenario 1
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Example
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Example

Results for DAM=Loewe
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Example

Results for DAM=Loewe
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Example

Results for DAM=HSA
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Example

Results for DAM=HSA
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Example

Interactive 3D plots
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Conclusions

Generic: meanR and maxR can be used with all null
models
No need for a model for synergy (i.e. nonparametric)
Control of false positive calls:

very good if DAM=DGM
slightly liberal, but acceptable, if DAM̸=DGM
if DAM=HSA, tests are too liberal; if DGM=HSA, too many
antogonism calls

Confidence intervals for effect sizes:
Preliminary conclusion: good coverage control
Check model fits: As for all statistical modelling: make
plots to check model fits (dose-response curves, variance
model) and data quality
R package: BIGL on CRAN
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