

Jessica Riley, *Shells* Artwork from Reflections Art in Health

Wim Van der Elst¹ (<u>wvandere@its.jnj.com</u>), Ariel Alonso², Lizet Sanchez³, Patricia Luaces³ & Geert Molenberghs²

¹ Janssen Pharmaceutical companies of Johnson & Johnson
 ² I-BioStat, KU Leuven and University Hasselt (Belgium)
 ³ Center of Molecular Immunology, Havana (Cuba)

Focus on personalized medicine:

• Traditional medical paradigm: one-size fits all treatment

Personalized medicine: treatment is tailored to an individual patient

Q: how can we predict which treatment is optimal for a given patient? => New statistical method to evaluate **predictive biomarkers**

Setting the scene:

- Design: data from a randomized clinical trial with two parallel treatment arms
- Candidate-predictors of treatment success (predictive biomarkers): S = (S₁, S₂, ... S_p)'
- True endpoint **T**: outcome to evaluate which treatment is best

Q: based on *S*, can we predict which treatment is optimal/best for <u>this</u> <u>particular patient</u>?

Rubin's causal-inference framework:

Central concept: potential outcomes (or counterfactuals)

 T_0 : true endpoint <u>if</u> the patient receives the <u>control</u> treatment

 T_1 : true endpoint <u>if</u> the patient receives the <u>experimental</u> treatment

• **Individual** causal treatment effect: $\Delta T = T_1 - T_0$

- E.g., survival time for a patient with treatment A = 5 years and with treatment B = 3 years, then $\Delta T = 2$ years.
- This is the individual causal treatment effect for this particular patient

The Predictive Causal Information (PCI; R_{ψ}^2):

- How well can we predict *AT* based on the candidate predictive biomarkers *S*?
- PCI quantifies the mutual information between S and ΔT
 - How much uncertainty in ΔT is removed when we know **S** for a patient?

 R_{ψ}^2 (PCI) is the squared correlation between ΔT and a linear combination of **S** (~coefficient of determination)

The fundamental problem of causal inference (Holland, 1986):

- Idea of potential outcomes (or counterfactuals)
 - T_0 : true endpoint <u>if</u> the patient receives the control treatment
 - T_1 : true endpoint <u>if</u> the patient receives the experimental treatment
- PCI: how well can we predict $\Delta T (= T_1 T_0)$ based on **S**?

- Setting here: parallel treatment arms
 - σ_{T0T1} is unidentifiable -> PCI is unidentifiable...

Dealing with unidentifiability:

Sensitivity analysis

$$R_{\psi}^{2} = \frac{\boldsymbol{a}_{1}\boldsymbol{\Sigma}_{TS}\boldsymbol{\Sigma}_{SS}^{-1}\boldsymbol{\Sigma}_{ST}\boldsymbol{a}_{1}'}{\boldsymbol{a}_{1}\boldsymbol{\Sigma}_{TT}\boldsymbol{a}_{1}'}$$

$$\boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{TT} & \boldsymbol{\Sigma}_{TS} \\ \boldsymbol{\Sigma}_{ST} & \boldsymbol{\Sigma}_{SS} \end{pmatrix}$$

$$\boldsymbol{\Sigma}_{TT} = \begin{bmatrix} \boldsymbol{\sigma}_{T0T0} & \boldsymbol{\sigma}_{T0T1} \\ \boldsymbol{\sigma}_{T0T1} & \boldsymbol{\sigma}_{T1T1} \end{bmatrix}, \quad \boldsymbol{\Sigma}_{TS} = \begin{bmatrix} \boldsymbol{\sigma}_{T0Sr} \\ \boldsymbol{\sigma}_{T1Sr} \end{bmatrix}$$
$$\boldsymbol{\Sigma}_{SS} = [\boldsymbol{\sigma}_{SrSn}],$$

Approach:

- Fix **identifiable parameters** at their estimated values
- Define a grid for the **unidentifiable correlation** ρ_{T0T1} ; **G** = {-1, -0.99, ... 1}
- Consider each value of ${\it G}$ in ${\it \Sigma}$ and retain the PD ${\it \Sigma}$
- Compute PCI for the retained $\pmb{\Sigma}$

=> We will get estimates of the PCI **across all "plausible realities"**, i.e., in all scenarios where the unidentifiable ρ_{T0T1} is compatible with the observed data

- CIMAvax-EGF: therapeutic anti-cancer vaccine in lung cancer (Lorenzo-Luaces et al., 2022)
- Evidence of heterogeneity in treatment response (T = survival time): why do some patients respond well to the treatment, and others not?
- Q: are there predictive biomarkers?

TABLE 3 Summary statistics for R_{ψ}^2 using the combinations of S_1 = Basal EGF concentration, S_2 = proportion of CD4+ T cell, S_3 = CD8+CD28- T cells , S_4 = CD4/CD8 ratio, S_5 = CD19 B cell, S_6 = absolute lymphocyte count, S_7 =neutrophil-to-lymphocyte ratio , S_8 =absolute eosinophil count, S_9 = absolute monocyte count, S_{10} = white blood cell count as pretreament predictors and T = The elapsed time since trial inclusion to death in the control (T_0) and CIMAvaxEGF treatment (T_1) groups

	R_{ψ}^2			
S	Mean	Min	Median	Max
(<i>S</i> ₂)	0.486	0.354	0.469	0.694
(S_2, S_9)	0.563	0.423	0.546	0.772
(S_2, S_7, S_9)	0.658	0.521	0.645	0.847
(S_2, S_4, S_7, S_9)	0.721	0.603	0.713	0.873
$(S_1, S_2, S_4, S_7, S_9)$	0.795	0.689	0.789	0.923
$(S_1, S_2, S_4, S_5, S_7, S_9)$	0.814	0.727	0.810	0.915
$(S_1, S_2, S_4, S_5, S_6, S_7, S_9)$	0.836	0.751	0.832	0.933
$(S_1, S_2, S_4, S_5, S_6, S_7, S_9, S_{10})$	0.847	0.796	0.846	0.902
$(S_1, S_2, S_4, S_5, S_6, S_7, S_8, S_9, S_{10})$	0.851	0.815	0.851	0.889
$(S_1, S_2, S_3, S_4, S_5, S_6, S_7, S_8, S_9, S_{10})$	0.855	0.825	0.854	0.886

Observe:

- When **only 1 S is considered**, PCI is low and the uncertainty attributable due to non-identifiability is large (many ρ_{T0T1} are compatible with the observed data)
- When more S are considerded, PCI increases and uncertainty reduces

- Based on the model, we can also predict ∆T based on S for an individual patient
- Example: predict ΔT for a patient with high level of basal EGF concentration (S₁) and CD4 T-cells (S₂), and average values for the other S

Predict.Treat.Multivar.ContCont(Sigma_TT = Sigma_TT, Sigma_TS = Sigma_TS, Sigma_SS = Sigma_SS, Beta = Beta, S = S_high, mu_S = mu_S, T0T1 = seq(-1, 1, by = 0.01))

67.8753

Variances and 95% support intervals of Delta_T_j \mid S_j for different values of rho_T0T1

	rho_T0T1	Var Delta_T_j∣S_j	95% supp. int. around Delta_T_j S_j
(min. value)	0.150	114.184	[46.93174; 88.81886]
(max. value)	0.290	69.357	[51.5526; 84.198]
(median value)	0.220	91.770	[49.09948; 86.65113]
(mean value)	0.220	91.770	[49.09948; 86.65113]

Proportion of 95% support intervals for Delta_T_j \mid S_j that include 0, are < 0, and are > 0

0 included in support interval: 0

Entire support interval below 0: 0

Entire support interval above 0: 1 (obtained for rho_T0T1 values in range [0.15; 0.29])

Easy to implement in user-friendly software like MS Excel:

Predicting treatment success based on immunologic markers in advanced lung cancer (experimental treatment: CIMAvaxEGF; control treatment = best supportive care)						
Pretreatment predictors:						
EGF	1500					
Proportion of CD4+	45					
CD8+CD28-T cells	21					
CD4/CD8 ratio	1,5					
Proportion of CD19+ B cells	5					
Absolute lymphocyte count	34					
Neutrophil-to-lymphocyte ratio	2,5					
Absolute eosinophil count	2					
Absolute monocyte count	5					
White blood cell count	50					
Assumed correlation $r(T_{0r}, T_1)$:	0,22	(range [0,15, 0,29])				
Results:						
Expected individual causal treatment effect ($\Delta T S$): 95% support interval:		67,8753 [49,0995; 86,6511]				

Conclusion:

The expected individual causal treatment effect is above 0, which indicates that the experimental treatment is more beneficial to the patient The difference is significant (the 95% support interval does not contain zero)

Figure 2: Excel sheet for user-friendly prediction of $\Delta T \mid \mathbf{S}$ and its 95% support interval.

 Good responder (probability >50% of positive response) versus bad responders (probability <50%)

Summary:

- Causal-inference based approach to predict treatment success
 - PCI: how well can we predict ΔT based on S
 - Unidentifiability: sensitivity analysis
- Focus was here on predictive biomarkers, but similar methodology can be used for multivariate surrogate endpoints (Van der Elst *et al.*, 2019)
- Methodology is implemented in the R package EffectTreat <u>https://cran.r-project.org/web/packages/EffectTreat/index.html</u>

References

- Alonso, A., Van der Elst, W., & Molenberghs, G. (2015). Validating predictors of therapeutic success: a causal inference approach. *Statistical Modelling*, *15*, 619-636.
- Alonso, A. A., Van der Elst, W., Sanchez, L., Luaces, P., & Molenberghs, G. (2022). Identifying individual predictive factors for treatment efficacy. *Biometrics*, 78, 35-45.
- Van der Elst, W., Alonso, A. A., Geys, H., Meyvisch, P., Bijnens, L., Sengupta, R., & Molenberghs, G. (2019). Univariate versus multivariate surrogate endpoints in the single-trial setting. *Statistics in Biopharmaceutical Research*, 301-310.
- Lorenzo-Luaces, P., Sanchez, L., Saavedra, D., Crobmet, T., Van der Elst, W., Alonso, A. A., Molenberghs, G., & Lage, A. (2020).
 Identifying predictive biomarkers of CIMAvaxEGF success in non-small cell lung cancer patients. *BMC Cancer*.

Jessica Riley, Shells Artwork from Reflections Art in Health

Janssen / Pharmaceutical companies

wvandere@its.jnj.com

Janssen

PHARMACEUTICAL COMPANIES OF Johnson Johnson