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HEALTHY condition:
One bag of M&M'’s, with 5 colors.

Each color equally abundant at 20%.
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Relative abundance of M&M’s
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HEALTHY condition:
® One bag of M&M'’s, with 5 colors.

Each color equally abundant at 20%.
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DISEASED condition:

0.2 ® @ o @ . .
U v J Red M&M'’s increase in abundance (20% to 33%).
@ @ o
We’re constrained to 100%, therefore other colors
must decrease in relative abundance.
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Epsthalisl cells

A composition of single cell types

In single-cell RNA-seq data, the M&M colors are cell types.
The same principle applies: only relative information available (compositional data).

Starting from the single-cell gene expression count matrix:

1. Each single cell gets assigned a cell type label (M&M color), based on its gene expression.
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Epethalisl celle

A composition of single cell types ..

In single-cell RNA-seq data, the M&M colors are cell types.
The same principle applies: only relative information available (compositional data).

Starting from the single-cell gene expression count matrix:
1. Each single cell gets assigned a cell type label (M&M color), based on its gene expression.

2. One sums the number of cells per patient sample to derive the cell abundance count matrix.
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Compositional data require custom statistical models

In compositional data, we still want to infer upon the latent absolute abundance (actual number of M&Ms in the
bag). Two main avenues are possible:

1. Compositional statistical model (e.g., Dirichlet-Multinomial).

2. Compositional transformations (e.g., centered or additive log-ratio).

Let Y;, denote the cell type counts for cell population p in sample i. The centered-log-ratio (CLR) transformation is
Yip

Y;
Zl-p = log [Yi = log [(l’[iYi;)l/P] ,

With ¥; the geometric mean across cell types for sample i, and P the total number of cell populations.
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Compositional data require custom statistical models

In compositional data, we still want to infer upon the latent absolute abundance (actual number of M&Ms in the
bag). Two main avenues are possible:

1. Compositional statistical model (e.g., Dirichlet-Multinomial).

2. Compositional transformations (e.g., centered or additive log-ratio).

In this talk, we will benchmark the most popular methods out there for assessing differential cell type composition.

Through identifying shortcomings of existing methods,
we develop new methodology by leveraging building blocks from other methods in the literature.
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An overview of existing methods

Compositional transformation

Linear model post CLR
transformation.

Linear model post CLR
transformation. Bias correction on
effect size.
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Non-compositional transformation

Log-counts-per-million transformation,
weighted linear model and empirical
Bayes shrinkage of residual variance.

Linear model post logit or square root
arcsine transformation.

Count model

edgeR

Negative binomial model,
normalization of total count,
empirical Bayes shrinkage of
dispersion parameter.

Negative binomial model,
normalization of total count,
empirical Bayes shrinkage of
dispersion parameter.

Negative binomial model using
total count as offset.

Beta-Binomial model with shared
dispersion parameter.



Performances of existing methods

Differential gene expression methods
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FDR \ propeller, DCATS and naive methods
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Best performing method is still suboptimal

Counts are still heteroscedastic post transformation

Let Y;, denote the cell type counts for cell

population p in sample i.

fl
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CLR: Z;, = log ?'L with ¥; = (H }.J.j

If ¥, ~ Poi{A,),
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Wanance ol counts

Mean-variance relationship of counts (top row),
and CLR-transformed counts (bottom row).
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Impact of accounting for heteroscedasticitv

TPR
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Remember the M&M example; eftect sizes are biased

Uncertainty in bias correction is not propagated in statistical inference

0.4
Modeling the fractions directly for each cell type
independently would lead us to find all colors / cell
:g : types are changing.
g
"‘é"’m We should only find the red color.
G
g Effect sizes are biased due to compositionality.
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Best performing method is still suboptimal

Uncertainty in bias correction is not propagated in statistical inference

Method | Open access | Published: 14 April 2022

LinDA: linear models for differential abundance
analysis of microbiome compositional data

Huijuan Zhou, Kejun He, Jun Chen & & Xianyang Zhang &

Genome Biology 23, Article number: 95 (2022) | Cite this article
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Viar fﬂ}p !

= Var{f,,) + Var(f,) — 2C0v( 6, 4,).
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Impact of accounting for bias correction uncertainty

Bias correction uncertaintypropagation contributes to better false positive control
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voomCLR is at least on par and often outpertorms other
methods
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nature genetics

Article https://doi.org/10.1038/s41588-024-01688-9

Asingle-cell atlas enables mapping of
homeostatic cellular shiftsin the adult
humanbreast

Case study on breast cell atlas
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1hank you
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Alemu Takele Assefa Bie Verbist

If you have more questions, please contact:
kvandel4@its.jnj.com
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