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Terminology

Design space(Ds): defined by the multidimensional
combination and interaction of input variables (e.g., material
attributes) and process parameters that have been New Paradigm

demonstrated to provide assurance of quality. (ICH Q8) for establishing proposed specifications

Multivariate acceptable ranges(MAR): within multivariate
acceptable ranges, any combination of input parameters of
a unit operation yields the desired product quality and

Control Space:
process performance. (Kunzelmann et al, 2024)> Whore e
Hypercube to operate
AMV

Edge of failure = hull separating within spec from out of Design Space: Safety, effcacy
spec. Or a p(within spec) threshold. Where we are good Manufacturabilty
Control space = Control Space refers to the specific, defined
operating conditions (ranges) within the Design Space @
where the process is actually controlled during routine , u
production. It represents a narrower subset of the Design Excerpt from: _ _

. . . . Chen C (2006) Implementation of ICH Q8 and QbD—an FDA perspective. PharmaForum
Space_ (Could be a Set Of |n—process—control I|m|t$)_ (Bhutar" ;g;zh:é:aéi;me https://www.nihs.go.jp/drug/PhForum/Yokohama060609-02.pdf (accessed on
et al,2004)

L]
SO n O fl Y. Van Haelst / Sanofi - CMC-Biologics Statistics, Data Sciences, Global CMC dev. 2024-09-27 3


https://www.nihs.go.jp/drug/PhForum/Yokohama060609-02.pdf

Current challenges/solutions when exploring Design Space

» When in full control of process input parameters,
the problem is easy:

* Build a model

* Consider model uncertainty

* Use statistical inference to find the edge of failure

* Find a rules set f(inputs, rules) that validate the

input settings (the control space).

= Often simplified to a list of low-high settings,
defining a ‘hypercube’ within the design space. (like
JMP 17.2 Design Space explorer)**

=> Best hypercube (MAR) can be found without the
need for a hyper-dimensional grid by means of
nested optimization:

Outer optimization: find largest volume
[TUCL; — LCL; *x weight  (Upper/Lower Control Limit of input i)

for which (Inner optimization):
optim(max(p(failure) | in cube) < threshold

** For JMP approach, see Lancaster L.(2023)
§ For calculation time examples, see Taillefer V. & Nasir O. (2020)

sanofi

Mhen process input parameters are variable (i.e. day to c%
) the

variability, raw material, environmental conditions, ...
problem is hard!!

Need to integrate out model prediction with respect to
routine input variability, ideally proportional to their rate
of occurrence ‘

4
Current approach is simulation based: very tedious!$
+ Classic way: A — S~

* Build a grid in k dimensions.
(r-points per dimension gives rise to rk points)

* E(model, inputs)* at each grid point. Ak.a.
simulate inputs and perform model prediction
n times, then take the average.

* Delineate the hull or find inscribed hypercube
(as before) where p(failure) is lower than a

Y. Van Haelst / Sanofi - CMC-Biologics Statistics, Data Sciences, Global CMC dev.

threshold. (and use some interpolation technique
for course grids).

* E(.) = expectation function = fff::o model | random inputs
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Current challenges & solutions: the double curse

When process input parameters are variable (stochastic of nature)

Curse 1: sampling the tails of a distribution is simulation-expensive.

> Ina‘quality by design’ setting the edge of failure will be defined with very smallrisks rates.
l.e. p(out of spec) < 1%, 0.1% , 0.27% (ideally for 60)

» Binomial theorem shows high sampling rates are required to have sufficient precision on those small p-values.

Sampli tai Sampli tai . -
for extimating pa 005 For eatinaating pe 01 generating n=100’000 (1E5) samples to capture sufficient
. 8 o ses 8 o ses certainty around 0.05% risk is not a luxury
i e
nle 3
= | B nes B nes Workaround 1: adaptive sampling: no need to sample expensively

everywhere inside the knowledge space. Can be risk-based using
binomial confidence intervals as function of current n and E(p):

] » stop if P(E(pfailure),ncurrent < threshold) >

i B= confidence level
Alt. naming: a (= 1 — B) reliability risk

scaled density
0.4

0.2

<
[=]

1% 1o o 15 15 2o Workaround 2: sample a prediction/confidence/tolerance interval
and put confidence level on the simulated intervals. This is not the
same as the joint distribution! The idea is to take like 95% of the
prediction intervals when simulating inputs (sampling for 5% instead
of 0.5% on the joint is less expensive). Like in MODDE 13

T T
0.1% 0.5%
probability probability
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Current challenges & solutions

> When process input parameters are variable (stochastic of nature)

Problemis 2 x cursed:

Curse 2: curse of dimensionality. (Note: also problematic when input factors are fixed but estimates at the points are less expensive)

Example: L Tt
grid size 2 3 4 5 6 7 8
16 256 4096 65536 1048576 16777216 2.68E+08 4.29E+09
32 1024 32768 1048576 33554432 1.07E+09 3.44E+10 1.1E+12
64 4096 262144 16777216 1.07E+09 6.87E+10 4.4E+12 2.81E+14
Central Composite Design* 13 19 29 47 81 147 277

= Supported by Modde 13
Known workarounds

*  Use space filling design on a ‘number of points’ budget (! Mind: budget might be too small for a good estimate)

*  Rejection sampling like in MCMC, focalizing on the design space or edge of failure hull. See Kusomo et al., 2020 combining
rejection sampling for sampling points (curse 2) with a nested adaptive sampling at the point (curse 1).

. Define meta-model, then seek an optimal experimental plan to fit the model on the samples and substitute tedious further

simulation by the meta-model for Ds exploration. See Oberleitner et al., 2024 using a 2" order response surface ‘meta’-model
(RSM) on a central-composite design (CCD) *.
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Our question:

Define / plot
Full grid Design space contours
or (adaptive) Monte- Build
Meta model Perform nested

Carlo simulation

(per grid point) optimization for Hyper-
cube (MAR)

\ Usually both are required!
= Hypercube for control limits.

= Contour plots to explore and validate

Sparse
grid (CCD)

‘bypass’ simulation and metamodel

by a method of moments closed form
approximation for the Joint Distribution

Is it possible ?
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Method of moments approximation, assumptions

Restricted to:
Zy = [1,%1, X5, oo, Xy X1 X2, X1 X3, ooe, XiXj, o, XE, %5, .0, X7 | (N terms)
y =Bo+ Bixy + 4 BX + BrernX1Xz +  + Blreroske(k-1)))XkXk-1 + B+0.5k(k—-1)+1) X%+ + Bliero.se(k—1)+10) X

X1 -.x; ~ N(u;,sigma?) are independent random normal

* Interaction and Quadratic are small compared to main effects (B ... Bx) > Binteraction) Bquadratics
* There are sufficient main terms in the model and their coefficients are the major contributors

* By central limit theorem the joint distribution should approximate a normal distribution, even when the
distribution of individually summed terms are not.

Important notes

«  Calculation will be exact in the 15t and 2" moment even when assumptions do not hold

«  Deviation from approximation is by missing solution for 34 and 4t moment of the joint distribution. l.e.
treated as if zero like in a Normal distribution.

* Deviation from the approximation can be checked -> take a corner point, simulate and check distributional
properties.
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1stand 2" moments for the approximation

Response Surface Model (RSM) Predictor function
Define: Define:

X1, X2, ey X ~ J\f(ui, aiz) (independent normal random variables) Model coefficients:

e AT 2{yviyvy—1 RMSE?  x%(dfe)
RSM terms : B~ N{B. RMSES(X'X)™") sigma?  dfe
Zy = (1,30, %0, o) Xpey X1 X, X1 X3, o, XiX, oo, XE, %2, 0, xE] (N terms) Predictor ﬂinCtlon :
E(y) =Z'p
Expectation: .
Variance:
Zn = [L By s i Ha g Ha B3, oo il s S+ OF, oo i + O] Model error Var(y) = B'2f + RMSE(tr((X'X)™12) + Z'(X'X)~1Z)

i — p! 2 1 -1 1 ! —-14
Variance Z,,,., = Var(?): Prediction error Var(y) = B'28 + RMSE (1 + tr((X X) 2) +Z2'(X'X) Z)

Var(1) =0
Var (x;) = of

Var (x?) = 20} + 4p?af

Approx. deg. freedom:

B'Zp has df = o (under approximation of 2 ~ MVN(Z,,%))

Var (x;x;) = pfof + piof + ot o} Using Welsh-Sattherthwaite
- x2) = 2u.02

Cov (xu X; ) 2,“-10-1 df _ (V1 + Vz)z _ (V1 + Vz)z

Cov (x;x;, ;%) = piof + pi0f approx =z | 7 17

Cov (x;xj, xxx;) = 0 (distinct indices) o dfe dfe

Where:

Vi, =B'2f andV, = RMSE?(1 + tr((X'X)712) + Z'(X'X)~1Z)
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Testcases

* Currently only tested on 2 cases.

* Small number of factors (3)
Relevant quadratic and / or interaction terms
Reasonable factor input variability.

Testcase 1: Viable cell Density optimization on 3 factors

Testcase 2: Formulation optimization for viscosity on 3 factors
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Test case 1, Viable Cell Density optimization (1/3)

+ Factor distribution
+ Model Error

~( Confidence Error)

+ Factor distribution
+ Model Error
+ Residual Noise

~( Prediction Error)

N — - o
Joint 0 0 0
Distribution dur[-+1] ived[-+1] orb[-+1]

Random Random Random

Normal Normal Normal

Mean 0 Mean 0 Mean 0

SD 0.04167 SD 0.30189 SD 0.10667

[ ]
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Model:
icept
dur

orb

ived
ived*dur
orb*dur
orb*ivcd

orb*orb
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Test case 1, Viable Cell Density optimization (2/3)

Orb

Orb

0.158

simulation
n=100’000 / pt pifsilure)
Grid = 64x64x3 o

(12288 pts)

alculation time i T PR pifsilre
(HH:MM:S55.00] or 1e :

4:35:47.7]1 2
i 1
14 hours !!
method of moments .
Grid = 64x64x3 ‘ -y

(12288 pts)

00:00:02.52

{
alculation time 5
(HH: MM:SS .00) - . 4
3
2
" ]

3 seconds!!

Sanofi

02005 0423 \

110 120 T a0 @ 100 110 120 70 80 %0 160 110 120
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= Very comparable
results for ‘method of
moments’ compared to
simulated reference.

= Huge differencein
calculation times !
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Test case 1, Viable Cell Density optimization (3/3)

Method of moments compared to simulation reference: P(failure)-value difference

02805 0423

0158

level
Bos o
W 10,05
B o500
B ooy
. 05, 1.0
10,15)
15.2.0)

orh

MC pifailre)
a5
1

. ) N : \
i - s N ra
110 120 70 e o 100 140 120 70 a0 130
dur
sim.
, /' == T.0.M.

« Differences are not bigger than p(mom) - p(sim) +/- 2%
* Intheregion of interest (0.5% to 1% failure risk) it is smaller (-0.5 to O %) f \

!
Conclusion: Differences appear acceptable. [f

/
Remark: the difference is close to binomial sampling uncertainty when / .
estimating a prob of 0.5% with n=100’000 simulations. l;\ Y
e P
2024-09-27
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Test case 2, Viscosity response in a formulation (1/3)
k

n 30 Important pH2 effect
© g .
= :
ET Z 20 :
s8¢ S
[P j ;
B L Do s S :
a = :
[ :
0 H
© g 30
=} f= S H
£ ¢ o :
o B ® —_—
oS Qo || T TS T o
o = :
(N
0 0 0
suc[-+1] pH[-+1] arg[-+1]
Wide*perturbation: ¢ = 1/6 (High-Low) Fixed
T T |
Normal Normal
Mean 0 Mean 0
SD 0.33 SD 0.33

sanofi

* +30 covers entire DOE range

+ Factor distribution
+ Model Error
+ Residual Noise

~( Prediction Error)

+ Factor distribution
+ Model Error

~( Confidence Error)

Midpoint Corner ;
suc O suc1 . J(_)Int.
pHO pH -1 Distribution
arg0 arg -1
Model:
icept suc*pH
suc pH*pH
pH
arg
2024-09-27
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Test case 2, Viscosity response in a formulation (2/3)

\

Simulation pifailure)
n=100’000 / pt S, —
Grid = 50x50x3

(7500 pts)

pifailure)
5

Calculation time|
(HH:MM:SS.00)

16:53:37.04

method of pfailure)

p—

moments -

p{failure)
5

Calculation time
| (HH: MM: SS. 00))]

00:00:01.28

- omow o ow

1o 25 ol 05 10 o 28 [ o5 10 1o E oo o5 10
Suc
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Differences between
simulation and mom
are apparent
Appears to be shifted
to the right on ‘suc’
scale.

2024-09-27
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Test case 2, Viscosity response in a formulation (3/3)

Method of moments compared to simulation reference: P(failure)-value difference

p(Failure) difference between method of moments(MOM) compared to Monte-Carlo(n=1e3) reference

Factor precision + model error + prediction error

-]

}7\\ e =im.
.f '\ — m.a.m.

[\
A\

sim.
m.o.m.

Similar slope,
but curvature
(aka 2" moment good.

Problem is missing 3" moment)

f \ Corner
/ .

_/ N

sanofi

4
Y. Van Haelst / Sanofi - {

T T
-2 0

normal quantiles

ata Sciences, Global CMC dev.

maom pifailura)

05

int simulation

/

=» Differences are present
=» leads to underestimation:

p=0.5% in mom underestimates
by 0.5-1%

p = 1% in mom underestimates
by 1-2%

= QQ-plot evaluation indicates

result of unaccounted
skewness.

Differences are small but
sufficient relevant to further
investigate

Since qq-plot indicates
mostly skweness
misspecification, elucidating
3rd moment could correct
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Is RSM m.o.m. good enough ?
Could we leverage a simplified 34 / 4t moment function ?

Should we use CCD, and an RSM metamodel on sampled moments ?

We appreciate your input !
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