Heffex Sanofi

Scientists dreamt of it, OMARS made it

Unveil the power of small data

NCS Conference Wiesbaden, September 2024

Presenters: Marion Berger (Sanofi) and José Núñez Ares (Effex) In collaboration with: Hugo Zuin (IPPON Innovation), Loïc Lemariey (Ividata), Cigdem Bayka (Sanofi), Caroline Viault (Sanofi), Sophie Martin (Sanofi)

01 The problem

- **O2** The OMARS approach
- **03** Data modeling

Summary

- **04** Optimization
- 05 Conclusions

Challenge: combine formulation & process factors for tabletting

3 formulation factors6 process factorsCombination of quantitativeand qualitative factors

50 responses to analyze 12 responses for optimization

Screening + optimization single design Aim: reduce timing (<= 27 runs)

3

Input parameters (factors)

9 factors

50 Res	ponses,	focus	on	12
--------	---------	-------	----	----

Stage	Factor	Coded name	Range	Levels	Category
Formulation	Croscarmellose repartition (%)	X1	2.5-5	3	Quant
	PVP (%)	X4	3-7	3	Quant
	MCC/mannitol ratio (%)	X5	15.5-35.5	3	Quant
Process	Total mixing time (min) (Granulation)	X2	2-6	3	Quant
	Water (%) (Granulation)	Х3	18.2-38.5	3	Quant
	Impeller speed (rpm) (Granulation)	X7	350-600	2	Quant
	Calibration speed (rpm) (Sizing)	X6	1050-1550	3	Quant
	Grid size (μm) (Sizing)	X9	1016-1575	2	Quant
	Mixing method (Final mixing+lubrification)	X8	1 step/2 steps	2	Qual

Response	Coded name	Sense	Bound
Carr index 0 tap	Y6	Minimize	<20
Flodex disc (mm)	Y8	Minimize	<10
PSD < 150 μm (%)	Y9	Target	20-50
Extenso slope 100mg (Mpa/kN)	Y11	Minimize	
Extenso asymptote 100mg (N)	Y12	Maximize	>120
Min desag (sec) 2,2 Mpa	Y26	Maximize	>120
Mean disso 15 min 2,2 MPa (%)	Y28	Target	77
RSD disso 15 min (%) 2,2 Mpa	Y29	Minimize	
Mean disso 20 min 2,2 MPa (%)	Y30	Target	82
RSD disso 20 min (%) 2,2 Mpa	Y31	Minimize	
Mean disso 30 min (%) 2,2 Mpa	Y32	Target	90
RSD disso 30 min 2,2 MPa (%)	Y33	Minimize	

4

PVP: Polyvinylpyrrolidone, MCC: Microcrystalline cellulose, PSD: Particle Size Distribution, RSD: Relative Standard Deviation, Quant: Quantitative, Qual: Qualitative

Choosing the experimental design

Extra benefits of using OMARS designs:

- Orthogonality properties (among main effects, and between main and second-order effects) 1.
- 2. Prioritization on most important effects indicated by the scientists (main and interaction effects)
- 3. Low correlations (between most important effects)
- Sufficient power (for most important effects) 4.
- Good projections properties (fit a large variety of effects combinations, despite being super-saturated) 5.

The challenges in data modeling

51 potential effects in a second-order effects model $\rightarrow 2^{51}$ = 2.25 10¹⁵ possible models!

Two independent analyses:

- Using JMP and AICc-based Forward / Backward selection
- Using EFFEX and all-subsets model selection and model filtering

Methods identified same significant main effects and different second-order effects

All subset selection identifies the best models and reveals the most influential effects

Modeling was done together with scientists

Multi-response optimization

12 different responses with different optimization senses: minimization, maximization, and in interval

Two approaches:

- Using JMP and desirability
- Using EFFEX and probability of success

Objective: explore the region you want in the knowledge space to find a design space, and additionally compare different sets of operating conditions

Multi-response optimization

Design space determination using a graphical interface

Results from JMP/EFFEX were similar

Conclusions

Collaboration between scientists and statisticians is crucial to :

- Select the design in accordance with project's thoughtful risk endorsement,
- Then to identify meaningful models and determine the final optimal settings

Business impacts were:

- API saving: 9,5kg
- Project time saving: 4 months \rightarrow Answered to project acceleration target

Optimization of formulation and process simultaneously \rightarrow increased agility and flexibility of Drug Product development

9

Thank you! Sonofi softex

www.effex.app