Leveraging Bayesian Techniques in DOE Model Prediction and Simulation to Enhance Decision-Making in the Context of Large-Molecule Process Characterization in the Pharmaceutical Setting

Yang Cao & Jyh-Ming Shoung

Non-Clinical Statistics Conference September 25th, 2024 Wiesbaden, Germany

Johnson&Johnson Innovative Medicine

Drouville, In the fish tank

tient, graphic designer and artist from Argentina who has survived multiple myeloma and a relapse

process characterization

High resolution purification steps

Criticality—which parameters critically impact the quality of product? Proven acceptable range (PAR)--what ranges of the parameters are acceptable?

J&J Innovative Medicine

Image source: https://www.sciencedirect.com/science/article/pii/S1517838216310413

Final biophameceutical

Proposed statistical workflow for criticality and PAR assessment

J&J Innovative Medicine

CPP: Critical Process Parameter PAR: Proven Acceptable Range

Which parameters are critical?

Which parameters are critical?

J&J Innovative Medicine

*Hakemeyer C, McKnight N, St John R, Meier S, Trexler-Schmidt M, Kelley X2, Zettl F, Puskeiler R, Kleinjans X1, Lim F, Wurth C. Process characterization and Design Space definition. Biologicals. 2016 Sep;44(5):306-18. doi: 10.1016/j.X2iologicals.2016.06.004. Epub 2016 Jul 25. PMID: 27464992.

Assessment

Critical Parameters

Which parameters are critical?

J&J Innovative Medicine

*Hakemeyer C, McKnight N, St John R, Meier S, Trexler-Schmidt M, Kelley X2, Zettl F, Puskeiler R, Kleinjans X1, Lim F, Wurth C. Process characterization and Design Space definition. Biologicals. 2016 Sep;44(5):306-18. doi: 10.1016/j.X2iologicals.2016.06.004. Epub 2016 Jul 25. PMID: 27464992.

Assessment

Critical Parameters

Based on DOE

We are proposing an effect-to-noise ratio, calculated based on DOE model

It allows for consistent and fair comparison, even when process knowledge is limited

We are proposing an effect-to-noise ratio, calculated based on DOE model

Parameter effect size (X₂): main effects +interactions

DOE Model: CQA=94.7 -2* X₁ +4.3* X₂ -3* X₁ X₂

What is the parameter effect size for X_2 ?

Parameter effect size: main effects +interactions

Grid-Search Illustration*--can be universally applied, accounting for applicable interactions and curvatures

Parameter effect size of X_2 = the max length of the vertical arrows=14.65 It quantifies the magnitude change in CQA due to X_2 when fixing other significant parameter at a level that results in the greatest impact

J&J Innovative Medicine

*F. Li et al., "Removing Subjectivity from the Assessment of Critical Process Parameters and Their Impact," Pharmaceutical Technology 42 (1) 2018.

Effect-to-noise ratio

The max magnitude change in CQA due to X₂ is 5.75 times the noise

Now, can we do better and account for model uncertainty?

Yes ! Instead of estimates, we can get distributions, thanks to Bayesian

Now, we have a distribution of effect-to-noise ratio from Bayesian

What is the certainty that the effect is real rather than noise?

Pr*ob* (e*ffect*> noise) < 50%

50%≤ Pr*ob*(e*ffect*> noise)< 80%

J&J Innovative Medicine

$80\% \leq Prob$ (effect> noise)

We can leverage the distribution of effect-to-noise ratio to assess certainty

Estimate based on Frequentist=5.7

Estimates based on Bayesian

Bound	//0 23/0 20/0 10/0
Ratio 1.0 3.2 3.9 4.2 5.3	3 6.6 6.9 7.8

99.8% certainty that the effect is greater than noise

We can leverage the distribution of effect-to-noise ratio to assess criticality

Estimate based on Frequentist=5.7

Estimates	based	on	Bayesian
-----------	-------	----	----------

Lower Bound	99.8%	90%	80%	75%	50%	25%	20%	10%
Ratio	1.0	3.2	3.9	4.2	5.3	6.6	6.9	7.8

90% chance that the effect is at least 3.2 times the noise

X₂ might be considered a CPP since there is a high chance that its impact is practically significant relative to the noise

Proposed statistical workflow for criticality and PAR assessment

J&J Innovative Medicine

CPP: Critical Process Parameter PAR: Proven Acceptable Range

Proven acceptable range (PAR) definition

PAR defined in ICH Q8 (R2) : "a characterized range of a process parameter for which operation within this range, while keeping other parameters constant, will result in producing a material meeting relevant quality criteria".

Proven acceptable range (PAR) definition

at all possible extreme conditions

PAR defined in ICH Q8 (R2) : "a characterized range of a process parameter for which operation within this range, while keeping other parameters constant, will result in producing a material meeting relevant quality criteria".

at target or normal operating range

Proven acceptable range (PAR) for X₁ in Monte Carlo simulation

Run simulations at the extreme case conditions for X_1 , while keeping X_2 at target CQA=94.7 - 2* X₁ + 4.3* X₂ - 3* X₁ X₂ 0 1 -1 X_1 -1 n **J&J** Innovative Medicine X_1

Proven acceptable range (PAR) for X₁ in Monte Carlo simulation

Run simulations at the extreme case conditions for X_1 , while keeping X_2 at target CQA=94.7 - $2^* X_1 + 4.3^* X_2 - 3^* X_1 X_2$

We applied fixed coefficients, which didn't account for model uncertainty ~~~ Can we improve?

Yes ! We can simulate Y using a distribution of model coefficients, thanks to Bayesian

Run simulations at the extreme case conditions for X_1 , while keeping X_2 at target CQA=94.7 - $2^* X_1$ + 4.3 X_2 - $3^* X_1 X_2$

A single estimate of failure %(Frequentist) v.s. a distribution of failure % (Bayesian)

Failure Rate=% simulated CQA fall outside the specifications/Acceptable limits

-	

95%	99%
2.3	9.2

Bayesian approach additionally accounts for model uncertainty

PAR of X₁ might need to be narrowed to ensure a failure rate <5% with 90% probability

What we proposed

Improve Bayesian distribution with scientific knowledge (e.g., informative prior)

Bayesian enhanced statistical workflow to facilitate the decisionmaking in the context of process characterization

Run more proof-of-concept examples

Continue the discussion to finalize

J&J Innovative Medicine

sanofi

William Eberley

Yi Li

Canghai Lu

Yukun Ren

Jiayi Zhang

Johnson&Johnson

Bill Pikounis

Hong Shen