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Motivating example: Pyridine data

▶ N = 120 rats (60 male and 60 female) were randomized to six different dose levels

▶ nij = 10 animals per dose/sex
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Introduction

▶ GPC effect sizes: related to the probability that the outcome of a subject in one group
(A = 1) is favourable compared to the outcome of a subject from another group (A = 0).

▶ E.g.: P (Y < Y ∗|A = 0, A∗ = 1).

▶ When ties are possible, a popular adaptation is the effect size

Θ = P (Y < Y ∗|A = 0, A∗ = 1)+0.5P (Y = Y ∗|A = 0, A∗ = 1) := P (Y ⪯ Y ∗|A = 0, A∗ = 1),

which will be referred to as the probabilistic index (PI).

▶ In presence of covariates: conditional PI

P (Y ⪯ Y ∗|A = 0, A∗ = 1,X = X∗)
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Methodology

Covariate-adjusted generalized pairwise comparisons in small samples S. Jaspers, J. Verbeeck, O. Thas 6



Probabilistic Index Model

▶ PI can be estimated using Probabilistic Index Model (PIM) as introduced by Thas et al.
(2012):

g(P (Y ≼ Y ∗|A,A∗,X,X∗)) = β0 + βA(A
∗ −A) + β′

X(X∗ −X),

where g(.) is a link function.

▶ PIM expressed in terms of pseudo-observations Iij :

E {I(Y ≼ Y ∗)|A,A∗,X,X∗} = P (Y ≼ Y ∗|A,A∗,X,X∗) = g−1(Z ′β),

with Z ′
ij = (A∗

j −Ai, (X
∗
j −Xi)

′) and Iij = I(Yi ≼ Y ∗
j ) = I(Yi < Y ∗

j )+ 0.5I(Yi = Y ∗
j )
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Probabilistic Index Model

▶ Parameter estimates based on solving estimating equation

Un(β) =
∑

(i,j)∈In

Ã(Zij ;β){Iij − g−1(Z ′
ijβ)} = 0,

Ã(Zij ;β) =
∂

∂β
g−1(Z ′

ijβ)V
−1(g−1(Z ′

ijβ)),

where V −1(g−1(Z ′
ijβ)) = g−1(Z ′

ijβ)(1− g−1(Z ′
ijβ)) is equal to the variance of the

pseudo-observations Iij

▶ Problem: Asymptotic estimation theory is not applicable if the sample size is small (< 50)

▶ Huge improvement by Amorim et al. (2015), who introduced a bias-reduced adjusted
jackknife empirical likelihood procedure
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PIM within GEE framework

Pseudo-observations Cluster1 Cluster2 Cluster3 Pseudo-covariates

Y GEE
1 = I11 = Iy11<y21

1 1 1 XGEE
1 = z11

Y GEE
2 = I12 = Iy11<y22 1 2 2 XGEE

2 = z12

Y GEE
3 = I13 = Iy11<y23

1 3 3 XGEE
3 = z13

Y GEE
4 = I21 = Iy12<y21 2 1 4 XGEE

4 = z21

Y GEE
5 = I22 = Iy12<y22

2 2 5 XGEE
5 = z22

Y GEE
6 = I23 = Iy12<y23

2 3 6 XGEE
6 = z23

Y GEE
7 = I31 = Iy13<y21 3 1 7 XGEE

7 = z31

Y GEE
8 = I32 = Iy13<y22

3 2 8 XGEE
8 = z32

Y GEE
9 = I33 = Iy13<y23 3 3 9 XGEE

9 = z33

▶ Two non-nested levels of clustering

▶ Correct inference for GEEs with non-nested clusters provided by Miglioretti and Heagerty
(2004)

▶ Several small-sample corrections available as well (e.g. MacKinnon, 1985; Fay and
Graubard, 2001; Morel et al., 2003, ...)
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Proposed method (Step 1)

▶ Following Miglioretti and Heagerty (2004), fit 3 working independence GEE models,
clustering on Cluster1, Cluster2 and Cluster3

g(µkj) = Xkjα.

U(α) =

K∑
k=1

D′
kV

−1
k (Y GEE

k − µk) = 0,

V GEE
LZ =

(
K∑

k=1

D′
kV

−1
k D

)−1

MLZ

(
K∑

k=1

D′
kV

−1
k D

)−1

,

MLZ =

K∑
k=1

D′
kV

−1
k Cov(Y GEE

k )LZV
−1
k D.
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Proposed method (Steps 2 and 3)

▶ Apply small-sample correction to the three variance-covariance matrices V GEE
1 , V GEE

2 ,

V GEE
3

▶ 8 adjustments considered, most promising results from Morel et al. (2003)

• MMBN = n∗−1
n∗−p

K−1
K−p

MLZ , where n∗ =
∑K

k=1 nk

• V GEE
MBN = BLZMMBNBLZ + δ̂χ̂BLZ , where δ̂ = min(0.5, p

K−p
) and

χ̂ = max(1;
trace{BLZMLZ}

p
).

▶ Combine into final variance-covariance matrix through

V GEE = V GEE
MBN,1 + V GEE

MBN,2 − V GEE
MBN,3

Extra: separation issues can be dealt with when logit link is used, currently only with MBN
adjustment
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Simulation Study
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Generating model

▶ Model:
Yi = α1X1i + α2X2i + · · ·+ αpXpi + ϵi, i = 1, . . . , n,

ϵi|Xi are IID N (0, 1)
X1 is a balanced group indicator (e.g. treatment)

▶ Corresponding PIMs:

Φ−1(P
{
Y ≼ Y ∗|X1, X

∗
1 , X2, X

∗
2 , · · · , Xp, X

∗
p

}
) = β1(X

∗
1−X1)+β2(X

∗
2−X2)+· · ·+βp(X

∗
p−Xp),

Φ−1(P
{
Y ≼ Y ∗|X1 < X∗

1 , X2, X
∗
2 , · · · , Xp, X

∗
p

}
) = δ1 + δ2(X

∗
2 −X2) + · · ·+ δp(X

∗
p −Xp)

▶ n = 14, 16, 20, 24, 30 observations

▶ 1000 simulation runs with

▶ α1 = 0, 0.5, 1 (β1 = δ1 = α1/
√
2)

▶ p = 2, 4, 6

▶ Coverage of 95% confidence intervals of treatment parameter
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Coverage of the 95% confidence intervals (p = 2)

p α1 N PIM BR-AJEL AJEL MBN Pan WL GST KC MD MK FG

2 0 14 87.50 95.07 94.83 95.43 89.18 96.03 94.11 96.03 93.99 93.63 91.11

16 90.47 96.10 95.87 96.44 92.31 97.01 95.64 97.24 95.75 94.95 93.34

20 92.84 97.12 96.47 96.15 92.63 97.01 96.05 97.33 96.26 95.83 94.44

24 92.23 97.03 95.60 95.19 92.74 96.01 95.30 96.22 95.19 94.48 93.25

30 92.65 96.37 94.86 95.17 92.15 95.27 94.36 96.58 95.17 94.76 94.06

0.5 14 86.83 93.73 94.10 96.24 89.34 96.61 95.48 95.73 94.73 94.35 92.60

16 90.14 96.88 95.38 96.38 90.26 96.63 96.00 96.88 95.38 94.76 94.01

20 91.39 95.81 96.15 96.38 92.41 96.49 94.90 97.06 96.04 94.90 92.98

24 92.61 96.79 95.82 95.50 93.04 96.04 95.29 97.00 95.50 95.18 94.11

30 92.04 96.38 95.45 95.24 92.24 95.86 94.83 97.21 95.24 94.62 93.59

1 14 83.64 91.44 93.43 95.72 86.54 96.79 94.50 97.09 93.27 92.66 93.12

16 87.01 94.26 94.71 96.53 90.33 96.68 94.11 95.77 93.35 93.05 91.84

20 89.90 95.02 95.44 94.74 91.84 95.30 94.05 95.85 93.78 93.36 92.39

24 92.32 95.91 95.04 94.80 92.81 95.79 94.92 97.15 94.42 94.05 93.06

30 91.41 95.19 94.73 94.39 92.10 94.62 93.36 96.22 94.62 93.93 92.44
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Coverage of the 95% confidence intervals (p = 4)

p α1 N PIM BR-AJEL AJEL MBN Pan WL GST KC MD MK FG

4 0 14 78.90 81.60 90.12 94.59 78.59 97.92 97.82 95.11 95.84 96.15 88.15

16 81.99 88.00 90.84 95.02 82.10 97.05 97.25 95.12 96.64 96.24 88.30

20 88.32 93.71 93.60 96.24 86.60 96.65 95.43 95.53 96.24 96.04 90.76

24 88.33 94.06 92.76 95.57 88.43 95.47 95.27 94.97 95.37 94.87 90.14

30 90.47 94.38 93.48 94.88 89.97 94.58 94.18 95.59 95.39 94.98 91.88

0.5 14 78.75 76.64 89.53 95.14 78.44 96.83 97.89 94.50 95.14 95.67 88.69

16 82.77 85.54 90.77 94.87 82.87 97.64 97.23 94.36 95.69 95.69 89.03

20 87.64 91.59 93.52 95.74 86.12 96.76 96.15 94.63 95.74 95.44 90.68

24 86.75 92.57 91.97 95.48 87.25 94.98 93.88 93.78 94.98 94.38 88.65

30 89.44 93.56 93.56 93.96 89.44 94.16 93.76 93.76 94.47 93.76 91.05

1 14 76.19 72.54 88.15 96.01 78.63 96.12 97.67 95.24 95.02 93.91 90.48

16 80.23 80.34 89.27 96.49 82.04 97.24 97.02 94.90 94.26 93.84 90.12

20 83.81 86.70 92.16 94.85 83.40 96.39 95.05 92.89 92.68 92.16 87.22

24 84.99 91.37 91.78 94.66 85.41 94.96 93.94 91.47 93.11 92.91 87.26

30 89.04 93.55 93.24 94.16 88.63 94.36 94.16 92.01 93.55 93.34 89.75
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Coverage of the 95% confidence intervals (p = 6)

p α1 N PIM BR-AJEL AJEL MBN Pan WL GST KC MD MK FG

6 0 14 70.00 55.36 79.05 94.29 74.05 88.57 99.52 97.14 98.57 99.52 92.74

16 77.79 66.63 86.80 94.74 72.53 97.00 99.46 96.35 98.50 99.14 90.02

20 79.43 78.31 87.68 90.84 75.56 96.33 96.64 93.08 95.82 96.44 84.32

24 83.15 88.09 90.01 93.54 80.32 95.56 95.36 94.15 95.86 95.86 85.97

30 88.40 93.10 92.70 95.20 85.10 95.40 95.30 95.40 96.30 95.80 89.50

0.5 14 68.56 48.61 81.44 94.32 73.78 86.89 99.19 95.48 98.49 99.77 92.34

16 75.57 62.81 85.95 94.05 71.78 95.89 99.57 96.00 98.16 99.46 88.32

20 77.99 76.66 87.41 92.02 74.72 96.72 96.62 92.22 96.01 96.21 85.06

24 82.05 85.86 89.37 92.78 80.64 95.09 94.68 92.98 93.88 94.68 85.16

30 86.40 92.00 91.80 94.90 84.20 94.60 94.40 93.10 95.40 95.60 88.40

1 14 67.80 43.66 79.88 96.22 74.88 84.51 99.02 96.59 98.29 99.76 93.05

16 76.22 58.67 85.67 95.89 73.89 93.22 98.89 94.33 97.44 98.44 91.11

20 75.54 73.59 86.33 92.09 73.38 96.61 97.23 92.39 95.07 95.79 86.43

24 82.56 84.27 88.81 91.83 79.84 95.26 95.67 89.11 93.65 94.35 84.88

30 85.54 90.56 91.67 94.28 83.43 94.88 94.08 89.56 94.28 94.88 86.95
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Data Application
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Pyridine data
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Results for male rats

Male rats
50 ppm 100 ppm 250 ppm 500 ppm 1000 ppm

0
ppm

PI (CI)
Unadj p
Adj p

71.7 (36.7;91.7)
0.2142
0.4015

73.93 (27.7;95.5)
0.3039
0.5362

63.32 (26.2;89.4)
0.4946
0.7809

7.9 (1.5;32.6)
0.0058
0.0175

<0.01 (<0.01;<0.01)
< 0.0001
<0.0001

50
ppm

- 58.82 (25.9;85.4)
0.6169
0.8591

44.64 (17.9;74.8)
0.744
0.8591

8.62 (1.2;41.7)
0.0229
0.0572

<0.01 (<0.01;<0.01)
<0.0001
<0.0001

100
ppm

- - 38.83 (12.8;73.3)
0.5394
0.8091

1.01 (0.2;5.7)
<0.0001
<0.0001

<0.01 (<0.01;<0.01)
<0.0001
<0.0001

250
ppm

- - - 5.48 (0.79;29.7)
0.0054
0.0175

<0.01 (<0.01;<0.01)
<0.0001
<0.0001

500
ppm

- - - - <0.01 (<0.01;<0.01)
<0.0001
<0.0001
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Results for female rats

Female rats
50 ppm 100 ppm 250 ppm 500 ppm 1000 ppm

0
ppm

PI(CI)
Unadj p
Adj p

42.78 (14.9;76.2)
0.6921
0.8591

60.83 (4.6;98.04)
0.8019
0.8591

45.23 (15.6;78.7)
0.8005
0.8591

9.18 (0.7;59.5)
0.0924
0.2131

1.04 (0.1;7.4)
<0.0001
0.0001

50
ppm

- 57.61 (18.8;88.9)
0.7311
0.8591

49.92 (19;80.9)
0.9964
0.9964

19.25 (3.5;61)
0.1336
0.2672

<0.01 (<0.01;<0.01)
<0.0001
<0.0001

100
ppm

- - 61.16 (19.0;91.4)
0.637
0.8591

50.76 (8.5;92)
0.9802
0.9964

3.56 (0.06;69.6)
0.1156
0.2478

250
ppm

- - - 56.68 (14.2;91.2)
0.7971
0.8591

11.75 (2.5;40.6)
0.0163
0.0445

500
ppm

- - - - 24.49 (1.6;86.5)
0.4546
0.7577
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R code available

https://github.com/JaspersStijn/SmallSamplePIMFinal/
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Discussion
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Discussion

▶ PIM reformulated into GEE framework for better small sample performance

▶ Especially MBN adjustment + Firth correction
▶ Sample size as low as 7 per group
▶ Only for comparing two groups

▶ GPC based on PI directly translates to other GPC effect sizes:

▶ e.g. NTB = 2PI-1

▶ Inference for other effect sizes based on delta method

Any Questions?
stijn.jaspers@uhasselt.be
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