sanofi

Analyzing Zero-Inflated Continuous Data in Limited Sample Size

Andreas Schulz Non Clinical Efficacy and Safety Biostatistics

Introduction

Motivation example

sanofi

Summarizing the problem

Challenges:

- Point mass at zero (many ties)
- Skewed distribution (extreme values)
- Small sample size (partly non-informative)

May be also:

- Perfect separation
- Unbalanced sample size
- Variance heterogeneity

Narrowing the problem

To refine the scope of the investigation, certain assumptions were made.

Assumptions:

- Two sample problem
- Independent observations
- The zero values are real, no censoring or LOD
- Sample size <=20 per group (small)

Methods

Non-parametric test

Presented are top 4 out of \sim 20 investigated methods.

BM - Brunner-Munzel test

Also known as the generalized Wilcoxon test.

The Brunner-Munzel test is a non-parametric rank-based, very robust test that can handle ties and heterogeneity of variance.

Neubert, Karin & Brunner, Edgar, 2007. A studentized permutation test for the non-parametric Behrens-Fisher problem. Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5192-5204, June.

Permutation tests

Simple permutation tests are known to be very robust, except in the case of variance heterogeneity, as they assume exchangeability.

ZWM-p permutation test with zero weighted median

$$ZWM(x) = \frac{median(x_{pos.}) * N_{pos.}}{N}$$

HL-p permutation test with Hodges–Lehmann estimator

Hodges, J.L., and Lehmann, E.L. (1963), Estimates of location based on rank tests. The Annals of Mathematical Statistics, 34, 598–611.

Location parameter

sanofi

proportion of zero values

Location parameter

sanofi

proportion of zero values

Multiple Transformation

MINT - Multiple Inverse Normal Transformation + Welch's t-test (100 times)

$$INT_{r}(x) = \Phi^{-1} \left\{ \frac{rank(x, ties = random) - \frac{1}{2}}{n} \right\}$$

p-values of 100 tests are combined with simple median rule.

Simulation Results

Type 1 error rate

Power

Conclusion

Conclusion

The Brunner-Munzel test is most effective when there is a moderate number of zero values in the data. In contrast, the ZWM-p test performs better when there are many zeros.

All 4 methods can be generalized to more than 2 groups

In case of complex design, MINT method may be as well useful, as it is applicable in combination with most parametric methods.

Brunner-Munzel test					ZWM permutation test					
0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Overall proportion of zero values										

Type 1 error rate (without zero values)

Artificial data example

Random data generation using g-and-h + binomial distribution.

