Statistical Tools for Continued Process Verification Changepoint Control Charts

Non Clinical Statistics Conference, Wiesbaden September 2024 - Jochen Giese

Overview

- Introduction
- Statistical methods used for CPV
 - Changepoint analysis combined with Ppk and control limits
- Summary

Note: All data and plots shown on the following slides are based on simulations and are <u>not</u> real production data.

Introduction

Introduction

- FDA Guideline on Process Validation (2011): "Production data should be collected to evaluate process stability and capability"
- Classical statistical tools for CPV are control charts, Cpk (short-term), Ppk (longterm)
- GSK applies a combined approach of (a posteriori) changepoint analysis, control limits, short term + long term Ppk

Statistical Methods in CPV

Changepoint Control Charts

Control Chart

Classical tool to detect shifts and trends / pattern

Outlier

Nelson Rule 1: One Point out of +/- 3*SD

Shift / Changepoint

Nelson Rule 2: Nine (or more) points in a row all above the average or all below the average

Pattern

Nelson Rule 3: 6 or more points in a row all increasing or all decreasing

LCL = Lower Control Limit, typically defined as average - 3*standard deviation UCL = Upper Control Limit, typically defined as average + 3*standard deviation

Control Chart

Classical tool to detect shifts, outliers, trends / pattern

no change-point within the data

1: outlier

2: shift

3: trend/pattern

Control Chart

No tool for (automated) analysis for not stable long-term data

Changepoint Control Chart

Combined approach using changepoint analysis, statistical control limits and Ppk

- Red lines: specification limits
- Dotted green lines:
 +/- 3*standard deviation around the mean per changepoint segment

Note: In addition to the short-term (flexible) control limits per changepoint segment fixed longterm control limits could be used.

Changepoint Control Chart

Combined approach using changepoint analysis, statistical control limits and Ppk

- Sequential (batch by batch) analysis by control limits
- Retrospective analysis by changepoint analysis
- Short-term process performance evaluation by short-term Ppk
- **Long-term** process performance evaluation by long-term Ppk.

Colored Changepoint Analysis for Root Cause Analysis

Change of raw material root cause for changepoint?

Changepoint Analysis (a posteriori)

How does it work – search for most probable changepoint candidate

Step1: Search for "optimal"/most probable changepoint in mean

Changepoint Analysis (a posteriori) How does it work - Test for significance

Step 2: Check if the "most probable" changepoint is significant Teststatistic: (Weighted) difference in mean compared to results for <u>random permutations</u> of given data set.

Changepoint Analysis (a posteriori)

How does it work – Iterative approach to detect more than one changepoint

The algorithm applies the test iteratively until no more significant changepoints are detected.

Summary

- Changepoint Analysis is able to detect (multiple) systematic shifts in mean.
- A combined "Changepoint Control Chart" enables to perform:
 - Sequential (batch by batch) analysis by control limits
 - Retrospective analysis by changepoint analysis
 - Short-term process performance evaluation by short-term Ppk
 - Long-term process performance evaluation by long-term Ppk.
- Combined approach enables to distinguish between systematic shifts and "isolated" outliers
- Use of "Short-term" Ppk (Ppk per change-point segment) instead of Cpk avoids the impact of autocorrelation

References

Changepoint Analysis

Biostatistics (2004), 5, 4, pp. 557–572 doi: 10.1093/biostatistics/kxh008

Circular binary segmentation for the analysis of array-based DNA copy number data

ADAM B. OLSHEN, E. S. VENKATRAMAN

Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA olshena@mskcc.org

ROBERT LUCITO, MICHAEL WIGLER

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA

Change-Point Analyzer Software

http://www.variation.com/cpa/index.html

http://cran.r-project.org/index.html

Disclaimer

This work was sponsored by GlaxoSmithKline Biologicals SA. Jochen Giese is employee of the GSK group of companies.