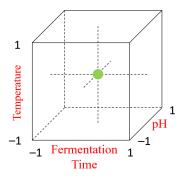


Optimal Experimental Designs for Process Robustness Studies

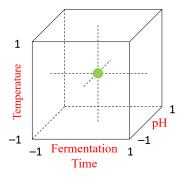
Ying Chen

(Research funded by a grant from GlaxoSmithKline Biologicals SA, Belgium)

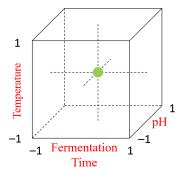

Supervisor: Prof. dr. Peter Goos (KU Leuven, University of Antwerp)

Co-supervisor: Dr. Bernard G. Francq (An employee of the GSK group of companies)

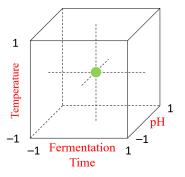
Overview


- Robust process
- Design selection criteria
- Design examples and evaluation
- Summary

• **Target operating condition**: a specific combination of settings of the process parameters



• **Target operating condition**: a specific combination of settings of the process parameters


• Unavoidable deviations around the target condition during routine production

• **Target operating condition**: a specific combination of settings of the process parameters

- Unavoidable deviations around the target condition during routine production
- Are the responses very different from the response at the target operating condition? If not, the process is robust

• **Target operating condition**: a specific combination of settings of the process parameters

- Unavoidable deviations around the target condition during routine production
- Are the responses very different from the response at the target operating condition? If not, the process is robust

KU LEUVE

 \Rightarrow Precise prediction of the difference in responses is important

Design selection criteria

I-Optimality Criterion (Integrated Variance). I-optimal designs minimize the average prediction variance:

$$\frac{\int_{\chi} \mathbf{f}'(\mathbf{x}) \left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{f}(\mathbf{x}) d\mathbf{x}}{\int_{\chi} d\mathbf{x}}$$

- $\mathbf{x}' = [x_1, x_2, \dots, x_k]$: a point in the experimental region
- **f**(**x**): model expansion of **x**
- X: model matrix
- $\mathbf{f}'(\mathbf{x}) (\mathbf{X}'\mathbf{X})^{-1} \mathbf{f}(\mathbf{x})$: prediction variance at \mathbf{x} relative to σ_{ϵ}^2
- $\int_{\chi} d\mathbf{x}$: volume of the experimental region

Design selection criteria

I-Optimality Criterion (Integrated Variance). I-optimal designs minimize the average prediction variance:

$$\frac{\int_{\chi} \mathbf{f}'(\mathbf{x}) \left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{f}(\mathbf{x}) d\mathbf{x}}{\int_{\chi} d\mathbf{x}} = \operatorname{tr}\left[\left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{M}\right]$$

- $\mathbf{x}' = [x_1, x_2, \dots, x_k]$: a point in the experimental region
- **f**(**x**): model expansion of **x**
- X: model matrix
- $\mathbf{f}'(\mathbf{x}) (\mathbf{X}'\mathbf{X})^{-1} \mathbf{f}(\mathbf{x})$: prediction variance at \mathbf{x} relative to σ_{ϵ}^2

KU LEU

- $\int_{\chi} d\mathbf{x}$: volume of the experimental region
- M: moments matrix

Example moments matrix M: 3 quantitative factors

1	0	0	0	0	0	0	1/3	1/3	1/3
0	1/3	0	0	0	0	0	0	0	0
0	0	1/3	0	0	0	0	0	0	0
0	0	0	1/3	0	0	0	0	0	0
0	0	0	0	1/9	0	0	0	0	0
0	0	0	0	0	1/9	0	0	0	0
0	0	0	0	0	0	1/9	0	0	0
1/3	0	0	0	0	0	0	1/5	1/9	1/9
1/3	0	0	0	0	0	0	1/9	1/5	1/9
1/3	0	0	0	0	0	0	1/9	1/9	1/5

I_D-**Optimality Criterion** (Integrated Variance for Differences)

$$\frac{\int_{\chi} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{0})]' \left(\mathbf{X}'\mathbf{X}\right)^{-1} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{0})] d\mathbf{x}}{\int_{\chi} d\mathbf{x}}$$

• **0**: center of the experimental region, typically where the target operating condition is located

I_D-**Optimality Criterion** (Integrated Variance for Differences)

$$\frac{\int_{\chi} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{0})]' \left(\mathbf{X}'\mathbf{X}\right)^{-1} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{0})] d\mathbf{x}}{\int_{\chi} d\mathbf{x}}$$

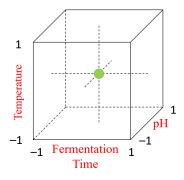
• **0**: center of the experimental region, typically where the target operating condition is located

 \Rightarrow $I_{\rm D}\text{-}optimal$ designs minimize the average prediction variance of differences in responses


I_D-**Optimality Criterion** (Integrated Variance for Differences)

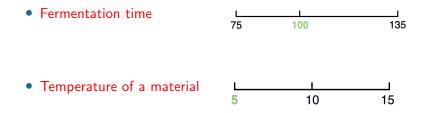
$$\frac{\int_{\chi} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{0})]' \left(\mathbf{X}'\mathbf{X}\right)^{-1} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{0})] d\mathbf{x}}{\int_{\chi} d\mathbf{x}}$$

• **0**: center of the experimental region, typically where the target operating condition is located


 \Rightarrow $I_{\rm D}\text{-}optimal$ designs minimize the average prediction variance of differences in responses

Trinca, L., & Gilmour, S. (2015).Improved Split-Plot and Multi-Stratum Designs. <u>Technometrics</u>, <u>57</u>, 145–154. https://doi.org/10.1080/00401706.2014.915235


What if the target setting is not at the center?


What if the target setting is *not* at the center?

What if the target setting is not at the center?

GI_D-**Optimality Criterion** (Generalized Integrated Variance for Differences)

$$\frac{\int_{\chi} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})]' \left(\mathbf{X}'\mathbf{X}\right)^{-1} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})] d\mathbf{x}}{\int_{\chi} d\mathbf{x}}$$

• t: target point

GI_D-**Optimality Criterion** (Generalized Integrated Variance for Differences)

$$\frac{\int_{\chi} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})]' (\mathbf{X}'\mathbf{X})^{-1} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})] d\mathbf{x}}{\int_{\chi} d\mathbf{x}} = \\ \operatorname{tr} \left[\left(\mathbf{X}'\mathbf{X} \right)^{-1} \mathbf{M} \right] + \mathbf{f}'(\mathbf{t}) \left(\mathbf{X}'\mathbf{X} \right)^{-1} \mathbf{f}(\mathbf{t}) - 2\mathbf{m}' \left(\mathbf{X}'\mathbf{X} \right)^{-1} \mathbf{f}(\mathbf{t})$$

- t: target point
- m: first column of M

 GI_{D} -Optimality Criterion (Generalized Integrated Variance for Differences)

$$\frac{\int_{\chi} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})]' \left(\mathbf{X}'\mathbf{X}\right)^{-1} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})] d\mathbf{x}}{\int_{\chi} d\mathbf{x}} = \\ \operatorname{tr} \left[\left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{M} \right] + \mathbf{f}'(\mathbf{t}) \left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{f}(\mathbf{t}) - 2\mathbf{m}' \left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{f}(\mathbf{t})$$

Three components:

- the average prediction variance
- the prediction variance at the target point
- average covariance between the predictions at each point in the experimental region and the prediction at the target point

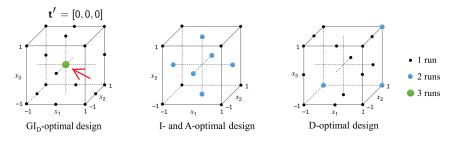
 GI_{D} -Optimality Criterion (Generalized Integrated Variance for Differences)

$$\frac{\int_{\chi} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})]' (\mathbf{X}'\mathbf{X})^{-1} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})] d\mathbf{x}}{\int_{\chi} d\mathbf{x}} = \\ \operatorname{tr} \left[\left(\mathbf{X}'\mathbf{X} \right)^{-1} \mathbf{M} \right] + \mathbf{f}'(\mathbf{t}) \left(\mathbf{X}'\mathbf{X} \right)^{-1} \mathbf{f}(\mathbf{t}) - 2\mathbf{m}' \left(\mathbf{X}'\mathbf{X} \right)^{-1} \mathbf{f}(\mathbf{t})$$

Three components:

- the average prediction variance
- the prediction variance at the target point
- average covariance between the predictions at each point in the experimental region and the prediction at the target point

 GI_{D} -Optimality Criterion (Generalized Integrated Variance for Differences)


$$\frac{\int_{\chi} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})]' \left(\mathbf{X}'\mathbf{X}\right)^{-1} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})] d\mathbf{x}}{\int_{\chi} d\mathbf{x}} = \\ \operatorname{tr} \left[\left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{M} \right] + \mathbf{f}'(\mathbf{t}) \left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{f}(\mathbf{t}) - 2\mathbf{m}' \left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{f}(\mathbf{t})$$

Three components:

- the average prediction variance
- the prediction variance at the target point
- average covariance between the predictions at each point in the experimental region and the prediction at the target point

Design examples

20-Run Designs for a Response Surface Model

- D-optimal designs maximize the determinant of the information matrix X'X
- A-optimal designs minimize the sum, or the average, of the diagonal elements of (X'X)⁻¹

KU LEUVEN

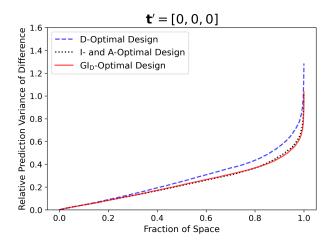
Design Evaluation

1. Relative $GI_{\rm D}$ -Efficiencies

 $\frac{GI_{\rm D}\text{-}\text{optimality criterion value of design 1}}{GI_{\rm D}\text{-}\text{optimality criterion value of design 2}}$

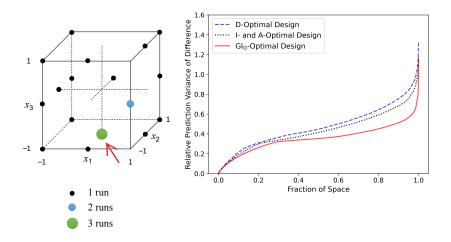
Design Evaluation

1. Relative $GI_{\rm D}$ -Efficiencies

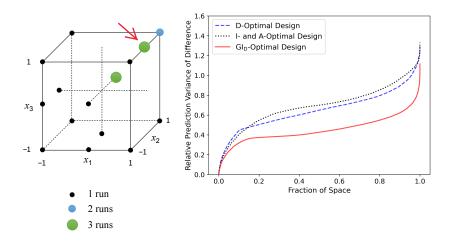

 $\frac{GI_{\rm D}\text{-}\text{optimality criterion value of design 1}}{GI_{\rm D}\text{-}\text{optimality criterion value of design 2}}$

Relative to the GI_D-optimal design:

- I- and A-Optimal Design: 99.64%
- D-optimal Design: 84.98%



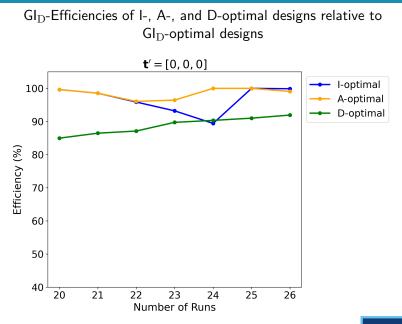
2. Difference Fraction of Design Space Plot


 $[\mathbf{f}(\mathbf{x}_i) - \mathbf{f}(\mathbf{t})]' (\mathbf{X}'\mathbf{X})^{-1} [\mathbf{f}(\mathbf{x}_i) - \mathbf{f}(\mathbf{t})].$ (de Oliveira et al., 2022)

$$t' = [0, 0, -1]$$

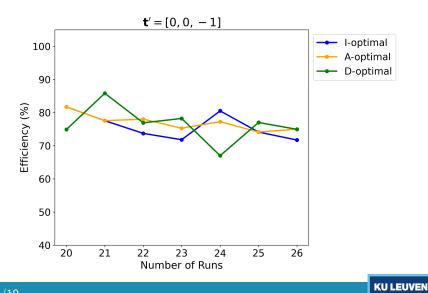
KU LEUVEN

$$\bm{t}' = [1,0,1]$$

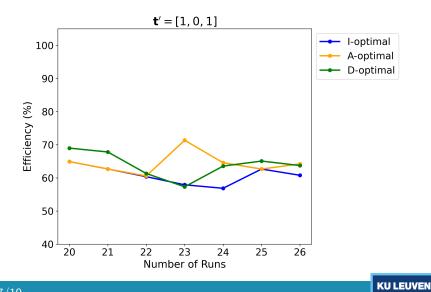

KU LEUVEN

13/19

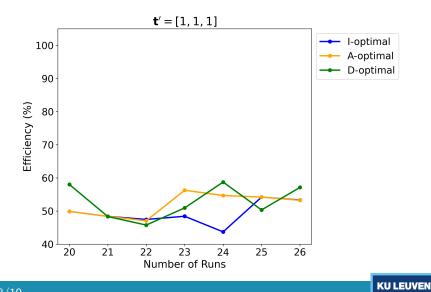
 $\mathbf{t}' = [1,1,1]$


KU LEUVEN

14/19



15/19


KU LEUVEN

18/19

Summary

 GI_D-optimal designs minimize the average prediction variance of differences in responses, where the target point can be any point in the experimental region

Summary

- GI_D-optimal designs minimize the average prediction variance of differences in responses, where the target point can be any point in the experimental region
- Gl_D-optimal designs tend to allocate more runs to the target point

Summary

- Gl_D-optimal designs minimize the average prediction variance of differences in responses, where the target point can be any point in the experimental region
- $\mathsf{Gl}_D\text{-}\mathsf{optimal}$ designs tend to allocate more runs to the target point
- ${\sf Gl}_D\text{-}{\sf optimal}$ designs outperform other designs for process robustness studies, especially when the target point is not at the center

Optimal Experimental Designs for Process Robustness Studies

Ying Chen

(Research funded by a grant from GlaxoSmithKline Biologicals SA, Belgium)

Supervisor: Prof. dr. Peter Goos (KU Leuven, University of Antwerp)

Co-supervisor: Dr. Bernard G. Francq (An employee of the GSK group of companies) Relative I-, A- and D-efficiencies of the GI_D -optimal designs ($\mathbf{t}' = [0, 0, 0]$) for estimating a response surface model in three quantitative factors

	Design Evaluation Criterion						
Run Size	l	А	D				
20	92.00%	92.32%	94.47%				
21	94.10%	95.26%	93.21%				
22	90.36%	95.68%	97.64%				
23	93.17%	99.12%	98.46%				
24	98.69%	100%	96.39%				
25	100%	100%	93.94%				
26	97.22%	98.08%	94.01%				
Average	95.08%	97.21%	95.45%				