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Robust Process

Target operating condition: a specific combination of settings
of the process parameters

• Unavoidable deviations around the
target condition during routine
production

• Are the responses very different
from the response at the target
operating condition? If not, the
process is robust

⇒ Precise prediction of the difference in responses is important
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Design selection criteria

I-Optimality Criterion (Integrated Variance). I-optimal designs

minimize the average prediction variance:∫
χ f

′(x) (X′X)−1 f(x)dx∫
χ dx

• x′ = [x1, x2, . . . , xk ]: a point in the experimental region

• f(x): model expansion of x

• X: model matrix

• f ′(x) (X′X)−1 f(x): prediction variance at x relative to σ2
ϵ

•
∫
χ dx: volume of the experimental region
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= tr
[(
X′X

)−1
M
]

• x′ = [x1, x2, . . . , xk ]: a point in the experimental region

• f(x): model expansion of x

• X: model matrix

• f ′(x) (X′X)−1 f(x): prediction variance at x relative to σ2
ϵ

•
∫
χ dx: volume of the experimental region

• M: moments matrix
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Example moments matrix M: 3 quantitative factors

1 0 0 0 0 0 0 1/3 1/3 1/3
0 1/3 0 0 0 0 0 0 0 0
0 0 1/3 0 0 0 0 0 0 0
0 0 0 1/3 0 0 0 0 0 0
0 0 0 0 1/9 0 0 0 0 0
0 0 0 0 0 1/9 0 0 0 0
0 0 0 0 0 0 1/9 0 0 0
1/3 0 0 0 0 0 0 1/5 1/9 1/9
1/3 0 0 0 0 0 0 1/9 1/5 1/9
1/3 0 0 0 0 0 0 1/9 1/9 1/5

Figure
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ID-Optimality Criterion (Integrated Variance for Differences)∫
χ[f(x)− f(0)]′ (X′X)−1 [f(x)− f(0)]dx∫

χ dx

• 0: center of the experimental region, typically where the
target operating condition is located

⇒ ID-optimal designs minimize the average prediction variance of
differences in responses
Trinca and Gilmour, 2015

Trinca, L., & Gilmour, S. (2015).Improved Split-Plot and
Multi-Stratum Designs. Technometrics, 57, 145–154.
https://doi.org/10.1080/00401706.2014.915235
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What if the target setting is not at the center?
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What if the target setting is not at the center?

• Fermentation time
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What if the target setting is not at the center?

• Fermentation time

• Temperature of a material
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GID-Optimality Criterion (Generalized Integrated Variance for

Differences)∫
χ[f(x)− f(t)]′ (X′X)−1 [f(x)− f(t)]dx∫

χ dx

• t: target point

• m: first column of M
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GID-Optimality Criterion (Generalized Integrated Variance for

Differences)∫
χ[f(x)− f(t)]′ (X′X)−1 [f(x)− f(t)]dx∫

χ dx
=

tr
[(
X′X

)−1
M
]
+ f ′(t)

(
X′X

)−1
f(t)− 2m′ (X′X

)−1
f(t)

Three components:

• the average prediction variance
• the prediction variance at the target point
• average covariance between the predictions at each point in
the experimental region and the prediction at the target point
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Design examples

     20-Run Designs for a Response Surface Model
       
   t′ = [0, 0, 0]

• D-optimal designs maximize the determinant of the
information matrix X′X

• A-optimal designs minimize the sum, or the average, of the
diagonal elements of (X′X)−1
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Design Evaluation

1. Relative GID-Efficiencies

GID-optimality criterion value of design 1

GID-optimality criterion value of design 2

Relative to the GID-optimal design:

• I- and A-Optimal Design: 99.64%

• D-optimal Design: 84.98%
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2. Difference Fraction of Design Space Plot

[f(xi ) − f(t)]′ (X′X)−1 
[f(xi ) − f(t)]. (de Oliveira et al., 2022)
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t′ = [0, 0,−1]
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t′ = [1, 0, 1]
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t′ = [1, 1, 1]

x1

x2

x3
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1 run

2 runs

5 runs
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GID-Efficiencies of I-, A-, and D-optimal designs relative to 
GID-optimal designs
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GID-Efficiencies of I-, A-, and D-optimal designs relative to
custom-made GID-optimal designs
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GID-Efficiencies of I-, A-, and D-optimal designs relative to
custom-made GID-optimal designs
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Summary

• GID-optimal designs minimize the average prediction variance
of differences in responses, where the target point can be any
point in the experimental region

• GID-optimal designs tend to allocate more runs to the target
point

• GID-optimal designs outperform other designs for process
robustness studies, especially when the target point is not at
the center
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Relative I-, A- and D-efficiencies of the GID-optimal designs (t′ = [0, 0, 0]) 
for estimating a response surface model in three quantitative factors

Design Evaluation Criterion
Run Size I A D
20 92.00% 92.32% 94.47%
21 94.10% 95.26% 93.21%
22 90.36% 95.68% 97.64%
23 93.17% 99.12% 98.46%
24 98.69% 100% 96.39%
25 100% 100% 93.94%
26 97.22% 98.08% 94.01%
Average 95.08% 97.21% 95.45%




