

Optimal Experimental Designs for Process Robustness Studies

Ying Chen

(Research funded by a grant from GlaxoSmithKline Biologicals SA, Belgium)

 Supervisor: Prof. dr. Peter Goos (KU Leuven, University of Antwerp)

 Co-supervisor: Dr. Bernard G. Francq (An employee of the GSK group of companies)

Overview

- Robust process
- Design selection criteria
- Design examples and evaluation
- Summary

Target operating condition: a specific combination of settings of the process parameters

Target operating condition: a specific combination of settings of the process parameters

Unavoidable deviations around the target condition during routine production

Target operating condition: a specific combination of settings of the process parameters

- Unavoidable deviations around the target condition during routine production
- Are the responses very different from the response at the target operating condition? If not, the process is robust

Target operating condition: a specific combination of settings of the process parameters

- Unavoidable deviations around the target condition during routine production
- Are the responses very different from the response at the target operating condition? If not, the process is robust

KU LEUVEN

 \Rightarrow Precise prediction of the difference in responses is important

Design selection criteria

I-Optimality Criterion (Integrated Variance). I-optimal designs minimize the average prediction variance:

$$
\frac{\int_{\chi} f'(x) (\mathbf{X}'\mathbf{X})^{-1} f(x) dx}{\int_{\chi} d\mathbf{x}}
$$

- $\mathbf{x}' = [x_1, x_2, \dots, x_k]$: a point in the experimental region
- $f(x)$: model expansion of x
- X: model matrix
- $f'(x) (X'X)^{-1} f(x)$: prediction variance at x relative to σ_ϵ^2
- $\bullet \ \int_{\chi} d\textbf{x}$: volume of the experimental region

Design selection criteria

I-Optimality Criterion (Integrated Variance). I-optimal designs minimize the average prediction variance:

$$
\frac{\int_{\chi} \mathbf{f}'(\mathbf{x}) (\mathbf{X}'\mathbf{X})^{-1} \mathbf{f}(\mathbf{x}) d\mathbf{x}}{\int_{\chi} d\mathbf{x}} = \text{tr}\left[\left(\mathbf{X}'\mathbf{X} \right)^{-1} \mathbf{M} \right]
$$

- $\mathbf{x}' = [x_1, x_2, \dots, x_k]$: a point in the experimental region
- $f(x)$: model expansion of x
- X: model matrix
- $f'(x) (X'X)^{-1} f(x)$: prediction variance at x relative to σ_ϵ^2

KU LEUVEI

- $\bullet \ \int_{\chi} d\textbf{x}$: volume of the experimental region
- **M**: moments matrix

Example moments matrix M: 3 quantitative factors

ID-Optimality Criterion (Integrated Variance for Differences)

$$
\frac{\int_{\chi} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{0})]' (\mathbf{X}'\mathbf{X})^{-1} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{0})] d\mathbf{x}}{\int_{\chi} d\mathbf{x}}
$$

• 0: center of the experimental region, typically where the target operating condition is located

ID-Optimality Criterion (Integrated Variance for Differences)

$$
\frac{\int_{\chi} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{0})]' (\mathbf{X}'\mathbf{X})^{-1} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{0})] d\mathbf{x}}{\int_{\chi} d\mathbf{x}}
$$

• 0: center of the experimental region, typically where the target operating condition is located

 \Rightarrow I_D-optimal designs minimize the average prediction variance of differences in responses Trinca and Gilmour, [2015](#page--1-0)

 I_{D} -**Optimality Criterion** (Integrated Variance for Differences)

$$
\frac{\int_{\chi} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{0})]' (\mathbf{X}'\mathbf{X})^{-1} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{0})] d\mathbf{x}}{\int_{\chi} d\mathbf{x}}
$$

• 0: center of the experimental region, typically where the target operating condition is located

 \Rightarrow I_D-optimal designs minimize the average prediction variance of differences in responses Trinca and Gilmour, [2015](#page--1-0)

螶 Trinca, L., & Gilmour, S. (2015).Improved Split-Plot and Multi-Stratum Designs. Technometrics, 57, 145–154. <https://doi.org/10.1080/00401706.2014.915235>

What if the target setting is not at the center?

What if the target setting is not at the center?

What if the target setting is not at the center?

$$
\frac{\int_{\chi} [f(\mathbf{x}) - f(\mathbf{t})]' (\mathbf{X}'\mathbf{X})^{-1} [f(\mathbf{x}) - f(\mathbf{t})] d\mathbf{x}}{\int_{\chi} d\mathbf{x}}
$$

• t: target point

$$
\frac{\int_X [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})]' (\mathbf{X}'\mathbf{X})^{-1} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})] d\mathbf{x}}{\int_X d\mathbf{x}} =
$$
\n
$$
\text{tr}\left[(\mathbf{X}'\mathbf{X})^{-1} \mathbf{M} \right] + \mathbf{f}'(\mathbf{t}) (\mathbf{X}'\mathbf{X})^{-1} \mathbf{f}(\mathbf{t}) - 2\mathbf{m}' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{f}(\mathbf{t})
$$

- t: target point
- m: first column of M

$$
\frac{\int_X [f(\mathbf{x}) - f(\mathbf{t})]' (\mathbf{X}'\mathbf{X})^{-1} [f(\mathbf{x}) - f(\mathbf{t})] d\mathbf{x}}{\int_X d\mathbf{x}} =
$$
\n
$$
\text{tr}\left[(\mathbf{X}'\mathbf{X})^{-1} \mathbf{M} \right] + f'(\mathbf{t}) (\mathbf{X}'\mathbf{X})^{-1} f(\mathbf{t}) - 2\mathbf{m}' (\mathbf{X}'\mathbf{X})^{-1} f(\mathbf{t})
$$

Three components:

- the average prediction variance
- the prediction variance at the target point
- average covariance between the predictions at each point in the experimental region and the prediction at the target point

$$
\frac{\int_X [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})]' (\mathbf{X}'\mathbf{X})^{-1} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})] d\mathbf{x}}{\int_X d\mathbf{x}} =
$$
\n
$$
\text{tr}\left[(\mathbf{X}'\mathbf{X})^{-1} \mathbf{M} \right] + \mathbf{f}'(\mathbf{t}) (\mathbf{X}'\mathbf{X})^{-1} \mathbf{f}(\mathbf{t}) - 2\mathbf{m}' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{f}(\mathbf{t})
$$

Three components:

- the average prediction variance
- the prediction variance at the target point
- average covariance between the predictions at each point in the experimental region and the prediction at the target point

$$
\frac{\int_X [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})]' (\mathbf{X}'\mathbf{X})^{-1} [\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{t})] d\mathbf{x}}{\int_X d\mathbf{x}} =
$$

tr $[(\mathbf{X}'\mathbf{X})^{-1} \mathbf{M}] + \mathbf{f}'(\mathbf{t}) (\mathbf{X}'\mathbf{X})^{-1} \mathbf{f}(\mathbf{t}) - 2\mathbf{m}' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{f}(\mathbf{t})$

Three components:

- the average prediction variance
- the prediction variance at the target point
- average covariance between the predictions at each point in the experimental region and the prediction at the target point

Design examples

20-Run Designs for a Response Surface Model

- D-optimal designs maximize the determinant of the information matrix X′X
- A-optimal designs minimize the sum, or the average, of the diagonal elements of $\left(\mathsf{X}'\mathsf{X}\right)^{-1}$

KU LEUVEN

Design Evaluation

1. Relative GI_{D} -Efficiencies

 G_D -optimality criterion value of design 1 G_D -optimality criterion value of design 2

Design Evaluation

1. Relative GI_{D} -Efficiencies

 G_D -optimality criterion value of design 1 G_D -optimality criterion value of design 2

Relative to the GI_D -optimal design:

- I- and A-Optimal Design: 99.64%
- D-optimal Design: 84.98%

2. Difference Fraction of Design Space Plot

 $[\mathbf{f}(\mathbf{x}_i) - \mathbf{f}(\mathbf{t})]'(\mathbf{X}'\mathbf{X})^{-1}[\mathbf{f}(\mathbf{x}_i) - \mathbf{f}(\mathbf{t})]$. (de Oliveira et al., 2022)

$$
\bm{t}'=[0,0,-1]
$$

KU LEUVEN

$$
\bm{t}'=[1,0,1]
$$

KU LEUVEN

1	2
x_3	1
1	2
2	3
3	4
4	5
5	12
6	12
7	1
8	10
9	20
10	20
11	20
12	20
13	20
14	20
15	20
16	20
17	22
18	20
19	20
10	0.0
11	22
21	22
22	20
22	0.4
22	0.4
22	0.4
22	0.8
22	0.8
22	0.8
22	0.8

KU LEUVEN

Summary

• GI_D -optimal designs minimize the average prediction variance of differences in responses, where the target point can be any point in the experimental region

Summary

- GI_D -optimal designs minimize the average prediction variance of differences in responses, where the target point can be any point in the experimental region
- GI_D -optimal designs tend to allocate more runs to the target point

Summary

- GI_D -optimal designs minimize the average prediction variance of differences in responses, where the target point can be any point in the experimental region
- GI_D -optimal designs tend to allocate more runs to the target point
- GI_D -optimal designs outperform other designs for process robustness studies, especially when the target point is not at the center

Optimal Experimental Designs for Process Robustness Studies

Ying Chen

(Research funded by a grant from GlaxoSmithKline Biologicals SA, Belgium)

 Supervisor: Prof. dr. Peter Goos (KU Leuven, University of Antwerp)

 Co-supervisor: Dr. Bernard G. Francq (An employee of the GSK group of companies)

Relative I-, A- and D-efficiencies of the GI $_{\rm D}$ -optimal designs $(\mathbf{t}'=[0,0,0])$ for estimating a response surface model in three quantitative factors

