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= Precise prediction of the difference in responses is important



Design selection criteria

I-Optimality Criterion (Integrated Variance). |-optimal designs
minimize the average prediction variance:

J P (XX) 7 f(x)dx
fx dx

® x' = [x1,X2,...,Xk]: a point in the experimental region

f(x): model expansion of x

X: model matrix

f/(x) (X'X) "1 f(x): prediction variance at x relative to o2

fx dx: volume of the experimental region



Design selection criteria

I-Optimality Criterion (Integrated Variance). |-optimal designs
minimize the average prediction variance:

/(x) (X'X) " f(x)dx o
Jx T dx = tr [(XX) "M

® x' = [x1,X2,...,Xk]: a point in the experimental region

f(x): model expansion of x

X: model matrix

f/(x) (X'X) "1 f(x): prediction variance at x relative to o2
° fx dx: volume of the experimental region

® M: moments matrix



0 0 0 0 0 0 1/3 1/3 1/3
1/3 0 0 0 0 0 0 0 0
0 1/3 0 0 0 0 0 0 0
0 0 1/3 0 0 0 0 0 0
0 0 0 1/9 0 0 0 0 0
0 0 0 0 1/9 0 0 0 0
0 0 0 0 0 1/9 0 0 0
0 0 0 0 0 0 1/5 1/9 1/9
0 0 0 0 0 0 1/9 1/5 1/9
0 0 0 0 0 0 1/9 1/9 1/5

Example moments matrix M: 3 quantitative factors
1
0
0
0
0
0
0
1/3
1/3
1/3




IH-Optimality Criterion (Integrated Variance for Differences)

J[FGx) = F(0)) (X'X) ™ [f(x) — £(0)]dx

J, dx

® 0: center of the experimental region, typically where the
target operating condition is located
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IH-Optimality Criterion (Integrated Variance for Differences)

L [F(x) = £O)) (X'X) ™" [f(x) — £(0)]dx
J, dx

® 0: center of the experimental region, typically where the
target operating condition is located

= Ip-optimal designs minimize the average prediction variance of
differences in responses

[ Trinca, L., & Gilmour, S. (2015).Improved Split-Plot and
Multi-Stratum Designs. Technometrics, 57, 145-154.
https://doi.org/10.1080/00401706.2014.915235
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What if the target setting is not at the center?
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What if the target setting is not at the center?

® Fermentation time 1 1 I

75 100 135




What if the target setting is not at the center?

® Fermentation time 1 L

® Temperature of a material L 1

135

10




Glp-Optimality Criterion (Generalized Integrated Variance for
Differences)

S () = F(B) (XX) 7 [f(x) — F(£)]dx
fx dx

® t: target point




Glp-Optimality Criterion (Generalized Integrated Variance for
Differences)

SJIFG) = F@F (X X)THf(x) — f(E)]dx
fx dx
te [(X%) ] 4 £(0) (XX) (1) - 2m’ (%) 6(1)

® t: target point

® m: first column of M



Glp-Optimality Criterion (Generalized Integrated Variance for
Differences)

SJIFG) = F@) (X X) T f(x) — f(E)]dx
fx dx B
e[ (XX) M () (XX) () - 2m' (X'X) T H(e)

Three components:

® the average prediction variance

® the prediction variance at the target point

® average covariance between the predictions at each point in
the experimental region and the prediction at the target point
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Differences)

SJIFG) = F@F (X X) T f(x) — f(E)]dx
fx dx
tr [(X’X)_1 M} +F(t) (X'X)~
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Three components:
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Glp-Optimality Criterion (Generalized Integrated Variance for
Differences)

SJIFG) = F@F (X X) T f(x) — f(E)]dx
fx dx
tr [(XX) T M|+ F(8) (XX) () - 2m' (X'X) (1)

Three components:

® the average prediction variance

® the prediction variance at the target point

® average covariance between the predictions at each point in
the experimental region and the prediction at the target point
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Design examples

20-Run Designs for a Response Surface Model

t’ =1[0,0,0]
°
1 1 1
& . 2 ° . e 1run
X3 I ™ X ¢ 3 ) ® 2runs
- 1 1 p

. i Y ® % % ® 3 runs

-1 Xy 17t 4 X 17t 4 X 17t

GI-optimal design I- and A-optimal design D-optimal design

® D-optimal designs maximize the determinant of the
information matrix X’'X

e A-optimal designs minimize the sum, or the average, of the
diagonal elements of (X'X) ™"
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Design Evaluation

1. Relative Glp-Efficiencies

Glp-optimality criterion value of design 1

Glp-optimality criterion value of design 2




Design Evaluation

1. Relative Glp-Efficiencies

Glp-optimality criterion value of design 1

Glp-optimality criterion value of design 2

Relative to the Glp-optimal design:
¢ |- and A-Optimal Design: 99.64%
e D-optimal Design: 84.98%



2. Difference Fraction of Design Space Plot

t'=10,0,0]
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[F(x:) — F(£)] (X'X) " [f(x;) — F(t)]. (de Oliveira et al., 2022)
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t' =[1,1,1]
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Glp-Efficiencies of |-, A-, and D-optimal designs relative to
Glp-optimal designs
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Summary

® Glp-optimal designs minimize the average prediction variance
of differences in responses, where the target point can be any
point in the experimental region
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Summary

® Glp-optimal designs minimize the average prediction variance
of differences in responses, where the target point can be any
point in the experimental region

® Glp-optimal designs tend to allocate more runs to the target
point

® Glp-optimal designs outperform other designs for process
robustness studies, especially when the target point is not at
the center



Optimal Experimental Designs
for Process Robustness Studies

Ying Chen
(Research funded by a grant from GlaxoSmithKline Biologicals SA, Belgium)

Supervisor: Prof. dr. Peter Goos
(KU Leuven, University of Antwerp)

Co-supervisor: Dr. Bernard G. Francq
(An employee of the GSK group of companies)




Relative |-, A- and D-efficiencies of the Glp-optimal designs (t' = [0, 0, 0])
for estimating a response surface model in three quantitative factors

Design Evaluation Criterion

Run Size | A D

20 92.00% 92.32% 94.47%
21 94.10% 95.26% 93.21%
22 90.36% 95.68% 97.64%
23 93.17% 99.12% 98.46%
24 98.69% 100%  96.39%
25 100% 100%  93.94%
26 97.22% 98.08% 94.01%

Average 95.08% 97.21% 95.45%






