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14 Stones of Ryoan-ji

• A 15th century Japanese temple 
of Ryoan-ji featuring a 
meditation stone garden

• Veranda that wraps around the 
garden opens to a view of 14 
large stones 
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15 (!) Stones of Ryoan-ji

• A 15th century Japanese temple 
of Ryoan-ji featuring a 
meditation stone garden

• Veranda that wraps around the 
garden opens to a view of 14 
large stones 

• Moving from one sitting spot to 
another, a careful observer will 
soon realize that the number of 
the stones is, in fact 15 

• But at no point will all 15 stones 
be revealed to the observer at 
ones! 
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Study Design

• Blood samples from 44 infants: 24 Unexposed (UE) and 
20 Exposed to HIV (HEU), i.e., mothers diagnosed with 
HIV

• Samples either untreated (Unstimulated) or treated with 
one of six compounds. We examined Untreated and LPS 
(lipopolysaccharide) treated samples only. 

• Each sample analyzed on a flow cytometer. Data 
published as .FSC files on a public repository.

• Combined data had >42M rows (cells or particles). Out of 
these, ~14M identified as lymphocytes. 

• Delta[i, j,k] = LPS[i, j,k] – mean(Unstimulated)[*, j,k] for j-
th subject and k-th marker (protein)

• Remaining ~6.9M lymphocytes (=LPS group)
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Flow Panel Design
Fluorophore Marker Description
FSC-A Size
SSC-A Granularity
FITC IFNa Pro-inflammatory cytokine (Th cell response)
PerCP-Cy5-5 MHCII Expressed by APCs (B cells, Mono/Macs, DCs), 

upregulated upon infection and presentation of 
antigen

APC-Cy7-A IL6 Pro-inflammatory cytokine (Th cell response)
Pac Blue IL12 Pro-inflammatory cytokine (Th cell response)
Alexa Fluor 700 TNFa Pro-inflammatory cytokine (Th cell response)
PE CD123 Dendritic cells
PE-Cy7 CD14 Monocytes/Macrophages
APC-A CD11c Dendritic cells

How the Immune System Works. L 
Sompayrac, Wiley 2019https://www.ptglab.com/news/blog/flow-

cytometry-gating-for-beginners/

https://www.ptglab.com/news/blog/flow-cytometry-gating-for-beginners/
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Automated Gating for Data Preprocessing

• In each sample, estimate density in FSC vs SSC plot

• Identify landmarks (“hill tops”)

• Lymphocytes are the bottom right cluster

• Identify boundary of the cluster by pixels above a 
threshold

• Delete stand-alone points on the periphery of the cluster 
(pixel with most neighboring pixels being below the 
threshold)

• Convex hull (“rubber band model”) to smooth the 
boundaries

• Map pixels in density plot back to cells; delete all but 
lymphocytes
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Principal Components Analysis

• PC1 explained 52.2% of variability; PC2 21.5%

• MHCII, IL6 and TNFa drove the differences in PC1 
direction; IL12 and INFa in PC2 direction

• Majority of points from UE and HEU overlap. 
However, we are interested in profiles of cells that 
are different between UE and HEU 

• Therefore, a different approach is needed – instead 
of looking for max variability (PCA), we want to 
look for max difference (PP)
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Rotated Principal Components and Differentially Populated Regions 
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Data Compression with Data Nuggets

Data Nuggets: A Method for Reducing Big
Data While Preserving Data Structure. Beavers et al, 
arXiv 2024
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Data Nuggets Biplot by %HEU in Each Nugget vs. in Total (40.5%) 
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Key Technology

• PP searches multivariate p-dimensional data for 
lower d-dimensional projections, revealing the 
main structure of the data, i.e., clusters, outliers, 
and any other low-dimensional nonlinear structure 
(see Friedman and Tukey 1974).

• PP indices (e.g., Natural Hermite index) are 
functions to numerically measure features of low-
dimensional projections

• Higher values of PP index = more interesting 
structures

• For PP index optimization, used Grand Tour 
Simulated Annealing (GTSA) algorithm

𝐼𝑁 =  𝑓 𝑦 -𝜙 𝑦  2𝜙 𝑦 𝑑𝑦
ℝ𝑑

 

• The Natural Hermite index measures the distance 
between the d-dimensional distribution 𝑓 𝑦 and the d-
dimensional normal distribution 𝜙 𝑦 :

• Grand Tour algorithm assigns a sequence of projections 
onto (usually) 2-dimensional planes to any given 
dimension of Euclidean space.

• Flipping through the sequence of projection creates “data 
movie”
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Differential Projection Pursuit

Let’s define Differential Natural Hermite dissimilarity for 
k d-dimensional distributions:

• Let 𝑓1 𝑥 , . . . . , 𝑓k 𝑥 be a set of k density functions

• Let 𝑓 𝑥 =
𝑤1𝑓1 𝑥 +⋯+𝑤𝑘𝑓k 𝑥

𝑤1+⋯+𝑤𝑘
be the weighted  

average

• For every pair of densities 𝑓i 𝑥 , 𝑓j 𝑥 the differential 
Natural Hermite dissimilarity with respect to 𝑓 𝑦 is 
defined by:

𝑑𝑓 𝑓i , 𝑓j =  
ℝ𝑑

𝑓i 𝑥 −𝑓j 𝑥 2𝑓 𝑥 𝑑𝑥

1
2

Apply projection 
matrix OR stop if 

improvement is small

Calculate density 
estimators መ𝑓1 𝑦 and 

መ𝑓2 𝑦 with Kernel 
density estimator

Calculate the index 
𝑑𝐻, መ𝑓

መ𝑓1, መ𝑓2 for 
projection P

Density estimator for big data sets based on data 
nuggets. Duan et al 2024 : 
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dPP Projection 1
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dPP Projection 2



17

dPP Projection 3
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LPS vs Untreated Projections

• 3 projections of LPS vs. Untreated, optimized for dPP

• In the 3rd columnBLUE = LPS>Untreated; RED = 
LPS<Untreated difference between the two densities
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Profiling Cells in Differentially Populated Regions

Novel machine learning approach to differential flow cytometry 
analysis base on projection pursuit. Dastgiri et al, 2024 (submitted)



Conclusion
• Manual or automated gating of flow cytometry 

data might not be able to capture the structure 
of multidimensional data 

• Differential Projection Pursuit creates 2D views 
complex multidimensional structures, optimized 
for maximal separation between the 
experimental groups

• The scientists and the statisticians must work as 
a team  to correctly design, analyze and 
interpret the results of the experiments
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