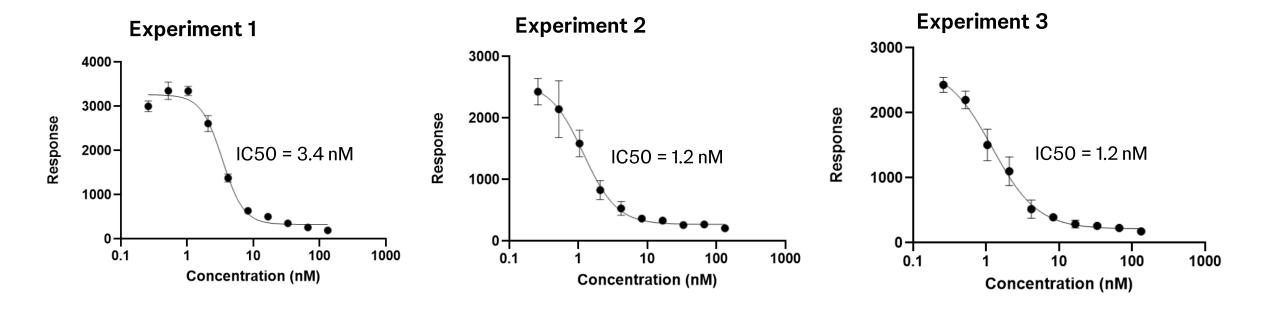
Comparing methods for averaging IC50s: can we forego complexity for a simpler approach?

Kristen Kohler,¹ Traymon Beavers,¹ Paul Dudas,² John DeLong,² Clara Moon,² Kacey Sachen,² Indra Sarabia,² Jocelyn Sendecki¹

NCS Conference 2024 September 25 Wiesbaden, Germany

Agenda

- 1. Background & Motivation
- 2. Methods for Aggregating IC50s
- 3. Comparing Methods via Simulation
- 4. An Automated Solution
- 5. Conclusions & Next Steps


Background & Motivation

Motivation

- First in-human dose of a treatment is established in part by performing repeated concentration-response experiments and determining IC50 (concentration corresponding with half maximal response)
- Many scientists have contacted us regarding averaging IC50s for various discovery programs
- Need a sound way to aggregate IC50s across experiments or donors
 - Statistically accurate
 - Easy to understand

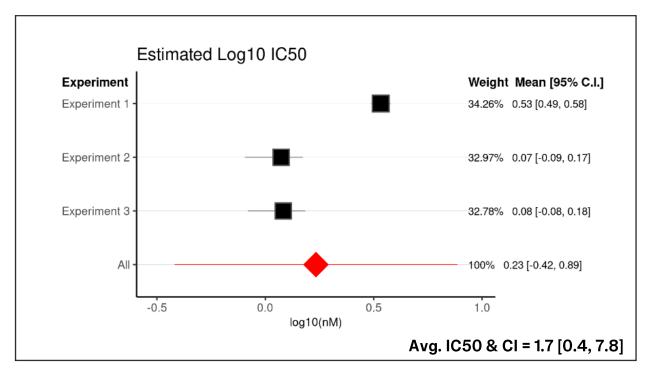
Example 1: Inhibition Data (Species 1) for Compound A


 Asked to average IC50s for small number of in vitro experiments for inhibitor of pro-inflammatory cytokine

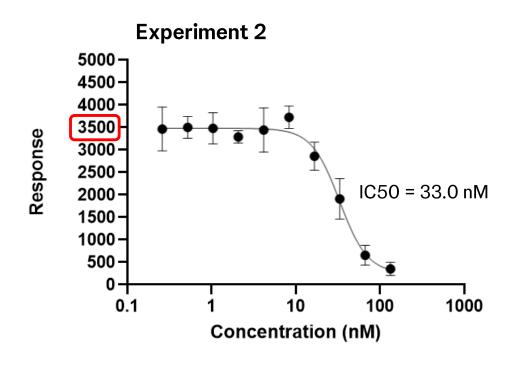
Example 1: Inhibition Data (Species 1) for Compound A

- Original Method: Calculate arithmetic average in excel
 - Over-predicts average since IC50 is log-normally distributed

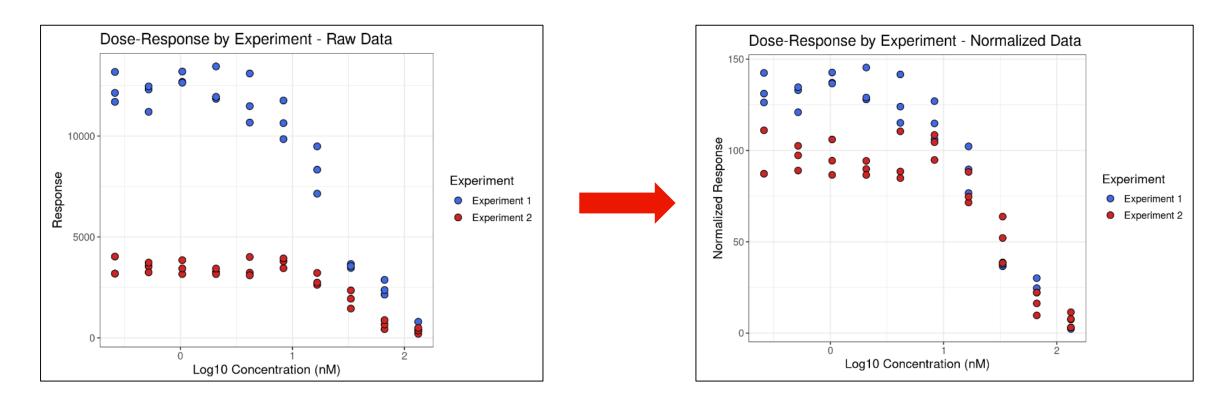
Experiment	IC50 (nM)
Experiment 1	3.4
Experiment 2	1.2
Experiment 3	1.2




Average IC50 & MoE 1.9 nM +/- 1.5 nM


Example 1: Inhibition Data (Species 1) for Compound A

- Perform fixed-effect meta-analysis with Hedges' estimator and t-test confidence intervals by recommendation of Jiang et al. *
- Confidence intervals 'inflated' with t-test for small number of experiments due to low degrees of freedom


Example 2: Inhibition Data (Species 2) for Compound A – Different Scales

Example 2: Inhibition Data (Species 2) for Compound A – Different Scales

- Non-linear mixed effect (NLME) model recommended for N = 2*
- When data is on very different scales, transformation may be required

Goals

- Find a method that is statistically accurate and simple
- Determine whether complex approaches (NLME) yield results similar enough to simple approaches (meta-analysis) to use a simplified approach moving forward
- Create an automated solution for scientists to calculate average IC50s

Methods for Aggregating IC50s

Geometric Mean

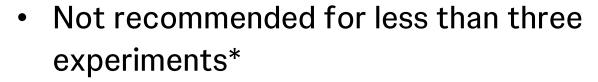
Report geometric mean across experiments as average IC50

Advantages |

- Easy to understand
- More accurately predicts average IC50 than an arithmetic mean
- Can be calculated without help from statistician

Limitations

Does not account for the variance associated with the estimated IC50s

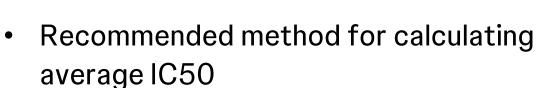

Meta-analysis

Average IC50 calculated by weighting individual Log IC50 estimates by standard error

Advantages |

- Easy to understand
- Fixed or random effects
- Can be implemented via Excel or Shiny Application
- Can use estimates from GraphPad Prism as input

Limitations



- Common in Discovery due to cost
- Confidence intervals could be 'inflated' with small number of experiments
- Could lose information by weighting curves with high standard error to zero

Non-Linear Mixed Effect (NLME) Model

Model data for all experiments/donors together to calculate an aggregate IC50

Advantages |

 Works well when averaging small number of experiments

Limitations

- Convergence issues
- Results are misleading if curves do not have similar min and max parameters
 - May require transformation of data
- More complex may require assistance of statistician

Examples Through Simulation - Methods

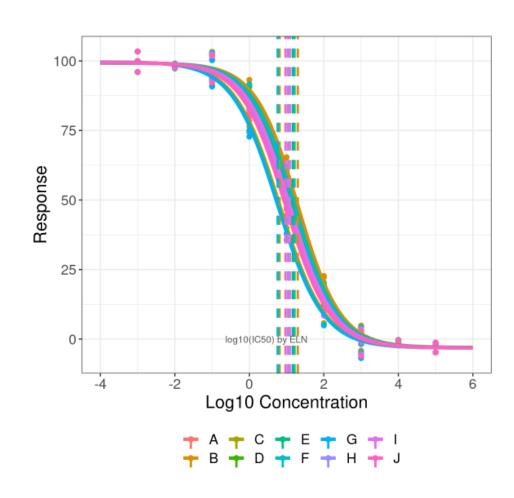
Methods for Comparison

NLME Models

- Performed on raw data and normalized data
- Explored with random effects on all parameters and random effect only on IC50

2. Meta-analysis

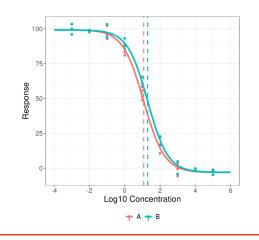
- Performed on individual experiment Log IC50 estimates, normalization not needed
- Explore random effects and fixed effects
 - DL Estimator (random effects)
 - Hedges' Estimator (fixed effects)
- Both methods explored with z-test and t-test confidence intervals

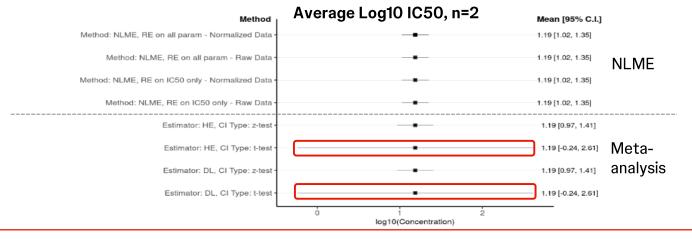

Simulation Process

- Simulate 10 dose-response curves to replicate experiments
- Compare average IC50s & confidence intervals across methods when averaging 2 experiments and 10 experiments under two scenarios:
 - Stable case (e.g., cell lines)
 - Very similar dose-response curves between experiments
 - Curves with more variation and on different scales (e.g., animal data)
 - Different top parameters

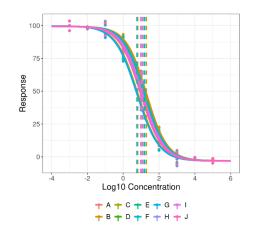
Examples Through Simulation – Low Variation

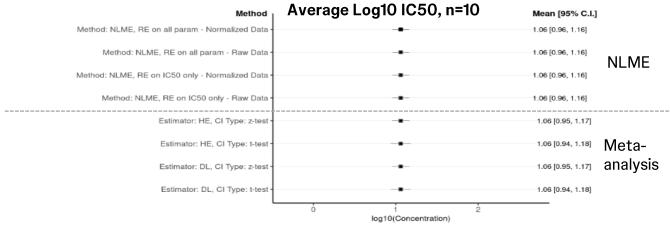
Simulation Setup – Low Variation Between Curves


- Simulated dose-response curves for 10 experiments
- Low within-experiment variation for all experiments
- Little variation between IC50 estimates
- Nearly identical top and bottom parameters

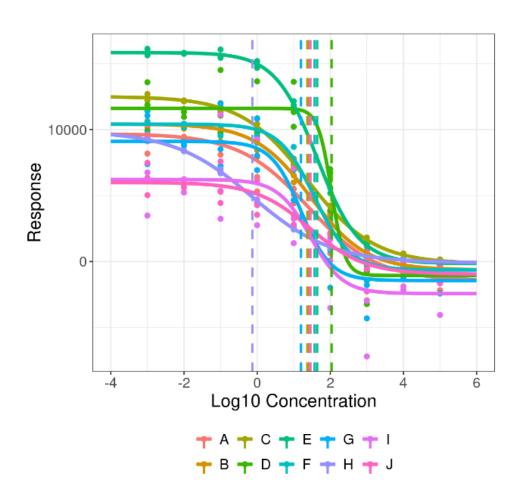


Simulation Results – Low Variation Between Curves


- Average IC50s nearly identical across methods for n=2 and n=10 experiments
- Cls similar for all methods except meta-analysis with t-test Cls for n=2

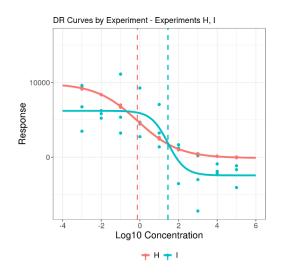

N=2 Experiments

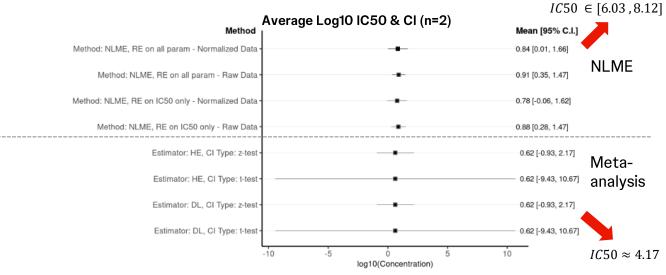
N=10 Experiments



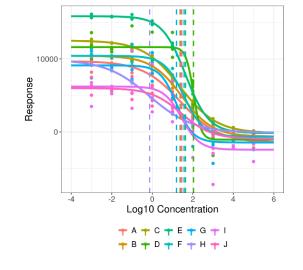
Examples Through Simulation – Different Scales

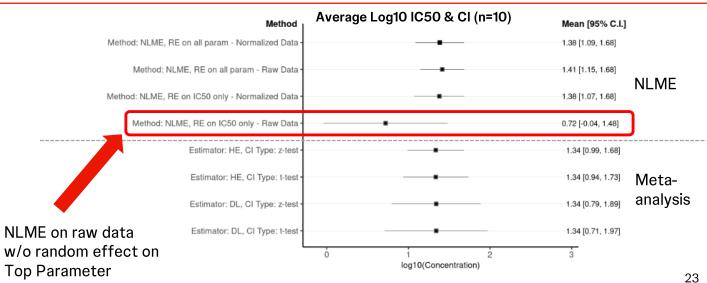
Simulation Setup – Curves on Different Scales


- Simulated dose-response curves for 10 experiments
- Higher variation between top parameters of curves
- Different within-experiment variation

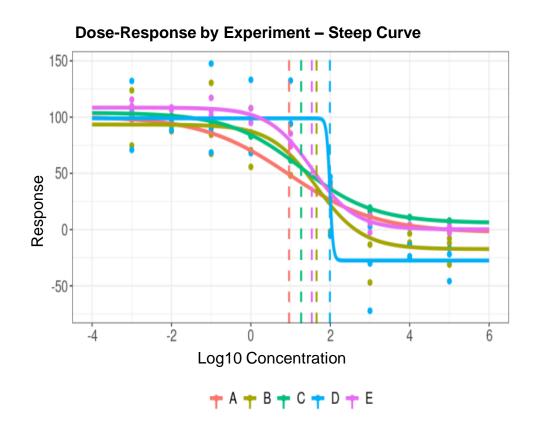


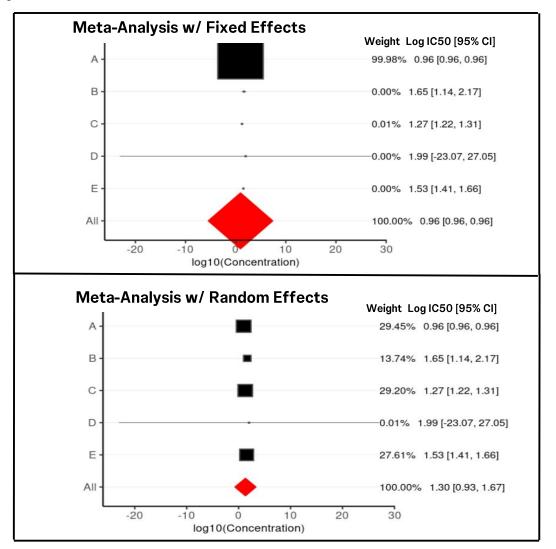
Simulation Results – Curves on Different Scales


 NLME on raw data w/o random effect on all parameters can produce very different average IC50 than other methods


N=2 Experiments

N=10 Experiments





Examples Through Simulation – Steep Curves

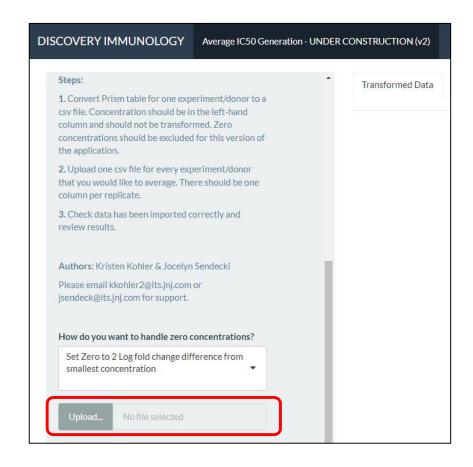
Simulation Setup – Steep Curves

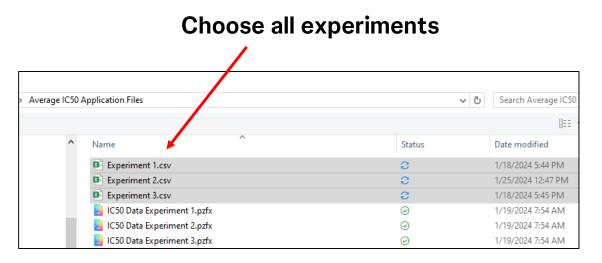
- Steep curves wreck the weighting scheme in meta-analysis with fixed-effects
- Meta-analysis will remove experiments with steep curves, resulting in loss of information
- If many steep curves present, convergence issues may occur with NLME

Summary

Summary

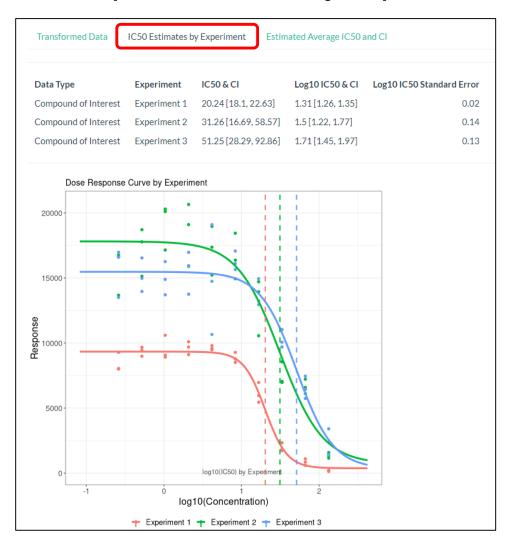
- There is no 'one size fits all' approach
 - Discovery often has limited sample size and variable data
- Most of the methods produce similar average IC50 estimates
 - Except NLME on raw data without random effects on all parameters when curves are on different scales
 - Except for steep curves
- Meta-analysis with random effects is a reasonable approach under most circumstances

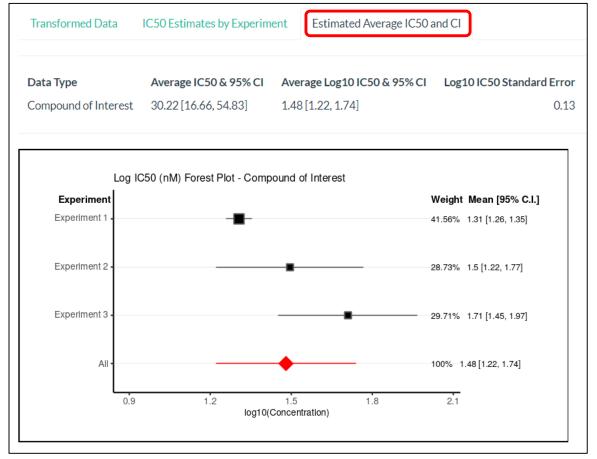

An Automated Solution


An Automated Solution

- Ultimately, we want an option to aggregate IC50s that is easy to understand and more statistically accurate
- Scientists may want to explore data on their own to get an approximate average IC50 across their experiments
- Creating application that will calculate IC50s by donor and average across donors using meta-analysis with random effects and z-test confidence intervals

Application Demo - Upload Data


Upload csv file for each experiment


Application Demo – View IC50 by Experiment

View IC50s and dose-response curves by experiment/donor

Application Demo – View Average IC50 & Forest Plot

 View weighted average IC50 calculated via meta-analysis and forest plot with results by experiment & overall

Future Application Add-ons

- Ability to compare IC50s of different treatments/compounds
- Ability to apply acceptance criteria
- Downloadable pdf report that could be uploaded to Electronic Lab Notebook (ELN)

Conclusion & Next Steps

Conclusion

- There is no 'one size fits all' approach
 - Discovery often has limited sample size and variable data
- Meta-analysis with random effects is a reasonable approach under most circumstances
 - Except for steep curves
- Shiny application can be used to help scientists get a more statistically accurate average IC50 estimate quickly

Next Steps

- Continue to explore methods and additional scenarios
 - Working group established in J&J Discovery Statistics to compare methods for special cases such as steep curves & non-responders
- Continue collaborating with scientists to build out application and deploy internally for use

Acknowledgements

Discovery and Nonclinical Safety Statistics

- Jocelyn Sendecki
- Traymon Beavers
- Nicholas Hein
- Bie Verbist
- Jeroen Tolboom
- Fetene Tekle
- Yannick-Andre Breton

Discovery Immunology

- Paul Dudas
- John DeLong
- Clara Moon
- Kacey Sachen
- Indra Sarabia
- Astrid Clarke
- Janise Deming

Thank you

If you have any questions, please contact:

Kristen Kohler kkohler2@its.jnj.com

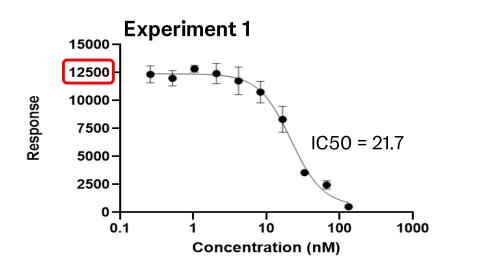
References

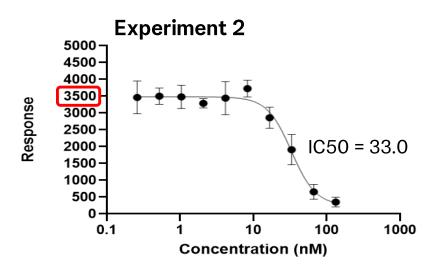
• 'Summarizing EC50 Estimates from multiple dose-response experiments: A comparison of a meta-analysis strategy to a mixed-effects model approach', Jiang X., Kopp-Schneider A.

Back-Up Slides

Code Snippets – Curve Simulation Example

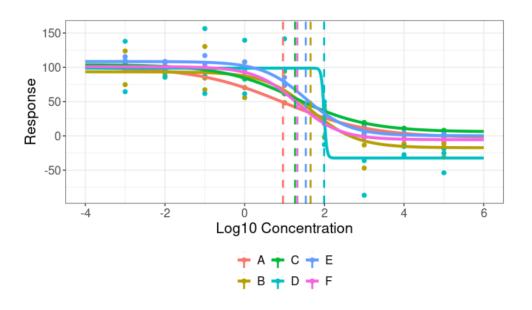
```
experiment num = 10
var.vec <- c(1500, 700, 200, 1500, 200, 700, 1500, 100, 2500, 1000)
data sim diff var = NULL
for (k in 1:experiment num){
  set.seed(k*100)
  x \text{ vec} = -3:5
  A sim1 = 15 + rnorm(1,0,5)
  B = 10000 + rnorm(1,0,3000)
  lic50 sim1 = 1 + rnorm(1,0,.7)
  slope sim1 = -.75 + rnorm(1,0,.4)
  rep num = 3
  y sim1 = NULL
  for (i in 1:rep num){
    set.seed(experiment num*i)
    var.tmp <- var.vec[k]</pre>
    y sim1 =
      c(y sim1,
        A_sim1 + (B_sim1 - A_sim1)/(1+10^{(slope_sim1*(lic50 sim1 - x vec))) +
          rnorm(length(x vec),
                var.tmp))
```


Code Snippets – NLME Example

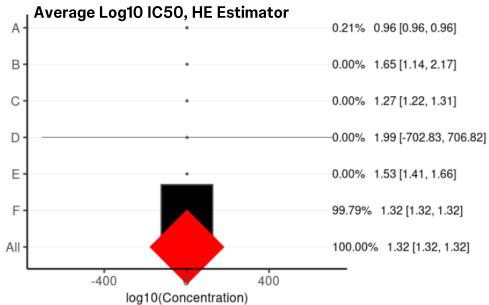

silent = TRUE)

```
control = nlmeControl(maxIter = 100, msMaxIter = 1000,
                                                                          tolerance = 0.1, abs.tol = 1e-20)
eval(parse(text=paste0("analysis.data <- data.modeling %>% filter(Experiment.num <= ", i+1 , ")" )))</pre>
 TOLVAL = 0.0001
  YVAR = "Response"
  XVAR = "Log10.Concentration"
  currentFormula <- as.formula(paste(YVAR,"~ SSfpl(",XVAR,", A, B, xmid, scal)"))</pre>
  forAnalysis <- analysis.data
  currentNls <- try(nls(currentFormula, data = forAnalysis), silent=TRUE) # this gets your nlme starting values
  startVals <- coef(currentNls)</pre>
  currentModel <- try(nlme(currentFormula,</pre>
                                data = forAnalysis,
                                groups = ~Experiment,
                                fixed = A + B + xmid + scal \sim 1,
                                control = control,
                               random = pdDiag(xmid ~ 1),
                               start = list(fixed = startVals)),
```

Practical Example with Method Comparison


Example 2: Inhibition Data for Compound A (Species 2) – Different Scales




Method	Avg Log IC50 & CI
Meta-analysis w/ random effect (RE) & t-test CI	1.42 [.26, 2.59]
Meta-analysis w/ random effect (RE) & z-test CI	1.42 [1.24, 1.60]
Meta-analysis w/ fixed effects & t-test Cl	1.42 [0.26, 2.59]
Meta-analysis w/ fixed effects & z-test Cl	1.42 [1.25, 1.60]
NLME on raw data, RE on IC50 only	0.19 [-1.32, 1.71]
NLME on raw , data RE on all parameters	1.35 [1.30, 1.34]
NLME on normalized data, RE on IC50 only	1.42 [1.31, 1.53]
NLME on normalized data, RE on all parameters	1.42 [1.29, 1.55]

Curves with Convergence Issues

Method	Avg Log IC50 & CI
Meta-analysis w/ random effect (RE)	1.31 [1.07, 1.55]
Meta-analysis w/ fixed effects	1.32 [1.32, 1.32]
NLME on raw data, RE on IC50 only	1.56 [1.35, 1.77]
NLME on raw, data RE on all parameters	Does Not Converge
NLME on normalized data, RE on IC50 only	1.48 [1.27, 1.70]
NLME on normalized data, RE on all parameters	1.52 [1.29, 1.74]

Meta-analysis Equations

Weighted Average

$$\hat{\mu} = \sum_{i=1}^{k} \hat{w}_i \phi_i^{(e)} / \sum_{i=1}^{k} \hat{w}_i$$

Weights

$$w_i = 1/(\tau^2 + \sigma_i^2)$$

Estimators

$$\hat{\tau}_{HE}^2 = \max \left\{ 0, \frac{1}{k-1} \sum_{i=1}^k \left(\phi_i^{(e)} - \frac{1}{k} \sum_{i=1}^k \phi_i^{(e)} \right)^2 - \frac{1}{k} \sum_{i=1}^k \hat{\sigma}_i^2 \right\}$$

$$\hat{\tau}_{DL}^{2} = \max \left\{ 0, \frac{\sum\limits_{i=1}^{k} m_{i} (\phi_{i}^{(e)} - \overline{\phi^{(e)}}_{m})^{2} - (k-1)}{\sum\limits_{i=1}^{k} m_{i} - \sum\limits_{i=1}^{k} m_{i}^{2} / \sum\limits_{i=1}^{k} m_{i}} \right\}$$

DerSimonian-Laird (DL) Estimator (random effects)

Hedges' Estimator (fixed effects)