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Drug development pipeline

Toxicity assessment is a critical step in drug development to ensure safety
Sun, Duxin, et al. "Why 90% of clinical drug development fails and how to improve it?." Acta Pharmaceutica Sinica B 12.7 (2022): 3049-3062.



Drug-Induced Liver Injury (DILI): A Challenge in Drug 
Development

The Liver: One of the most susceptible organs to drug toxicity.
Drug-Induced Liver Injury (DILI): Leading cause of drug 
withdrawals and clinical trial failures.
DILIrank dataset:

• FDA resource with 1,036 drugs categorized by DILI risk:
• Most Concern
• Less Concern
• No Concern

• Data from drug labels, literature, and real-world evidence
DILI Prediction

• Why: Traditional methods rely on animal testing (time-
consuming, expensive, ethical concerns).

• Challenge: DILI in humans arises from diverse metabolic 
pathways and population heterogeneity (sex, age, 
genetics…), making it difficult to predict.

Weaver, R.J., Blomme, E.A., Chadwick, A.E. et al. Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat Rev Drug Discov 19, 
131–148 (2020). 



Machine Learning for DILI Prediction: Challenges and New 
Directions
Multiple ML Models Explored (SVM, RF, kNN, EL, NN): Used to predict DILI, mainly from chemical 
structures or gene expression.
Gene Expression Models: Promising, but Limited

Achieved high accuracy but based on rat data (not applicable to humans)
Exception: Chierici et al. (2020) reported poor performance (random labelling) with human data, 
suggesting limitations of previous approaches

Towards in vitro Human-Relevant Models
Leverages human liver cell data (transcriptomics) from HEPATOPAC system: stable in vitro model 
for long-term drug toxicity studies.

https://bioivt.com/hepatopac-cultures



The transcriptomic data
18574 Genes

171 drugs



Objectives

Primary Objective:
Predict Drug-Induced Liver Injury (DILI) from human hepatocyte gene expression data provided by 
Janssen.

Secondary Objective:
Investigate if incorporating drug family information (based on off-target genes, next slide) improves 
the model's ability to predict DILI. This would support the idea there are different drug families with 
distinct gene signatures for DILI.



Objective 2 – Drug family clustering by off-target genes
The Hypothesis:

• Traditional approaches: all drugs have the same DILI 
mechanisms.

• Our hypothesis: different drug families might have unique 
DILI toxicity pathways.

Drug family clustering algorithm:

• Off-target genes (genes unintentionally affected by drugs) 
were extracted from external databases (OTSA, ABCD, Off-
X, DrugBank).

• Using data reduction techniques and clustering algorithms, 
we grouped the drugs into 3 distinct "families"

Testing the Theory

Two predictive models: without or with drug-clusters effect. Were 
the predictive performance improved ?



Data Characteristics and Challenges
Limited samples: 171 Drugs available for training and testing
Imbalanced Classes: 80% DILI 1 and 20% DILI 0
18574 genes (features) measured using microarray
Single Donor Data: using a single donor simplifies experimentation (high-throughput testing of drug candidates) but may 
not capture the full spectrum of human responses:

• Diversity: Genetic & mitochondrial differences among people can affect how they metabolize drugs
• DILI can be a rare event (estimated incidence of 1 per 100,000 treated patients for some drugs): A hepatotoxic drug 

might not be toxic for our donor
Multiple Doses: identifying the most informative dose for prediction remains unclear (effective vs. too high). 

https://www.youtube.com/watch?app=desktop&v=Hv5flUOsE0s https://en.m.wikipedia.org/wiki/File:Microarray2.gif



Dose-level calibration

Cluster A Cluster B Cluster C

Drug 1 Drug 2 Drug 3

Dose 0

Dose x (10µM)

Dose y (80µM)

Dose 0

Dose xx (3µM)

Dose yy (25µM)

Dose 0

Dose xxx

Dose yyy

Inter-Drug Variability: Direct comparison of doses across different drugs is challenging
• Drugs have varying potencies and mechanisms of action
• 100 µM of Drug A does not have the same effect as 100 µM of Drug B

Rescaling Approach: the doses were rescaled to a range of 0 to 1, by drug 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖



Distribution of normalized transcriptomic data

Gene Expression Data Preprocessing

Data were normalized by subtracting the median value of control (concentration 0 / DMSO), per probe.
Plot

Distribution of normalized expression values for a subset of the 171 drugs tested. Each drug was tested 
at multiple concentrations (1-5). Each boxplot summarizes the expression data of 18,754 genes.



Machine Learning Pipeline
Algorithms:

• Elastic net penalized regression (glmnet) : tidymodels

• Random forest (ranger): tidymodels

• Gradient boosting (LightGBM): tidymodels

• Mixed effect gradient boosting (GPBoost): package functions
Data splitting:
• 75%/25% Grouped Stratified train/test split, repeated 10 times
• Hyper parameter optimisation: Grouped Stratified 5-Fold Cross-

Validation, optimized on ROC–AUC
• Grouped splitting: observations from the same compound are never 

present in both training and testing data, preventing bias.
High Dimensionality: Feature reduction or feature transformation
Imbalanced Classes (more DILI cases): data upsampling (SMOTE) or 
class weighting

Image: Gupta, Abhijit, Mandar Kulkarni, and Arnab Mukherjee. "Accurate prediction of B-form/A-form DNA conformation propensity from primary sequence: A machine learning and free energy handshake." Patterns 2, 
no. 9 (2021).



Evaluating Model Performance

ROC-AUC:
• Considers all possible classification thresholds for the 

model's predictions.
• AUC (Area Under the Curve): how well the model 

distinguishes between DILI and non-DILI cases 
across these thresholds.

• A score above 0.5 indicates some predictive power
Balanced Accuracy:

• Imbalanced data (unequal numbers of DILI and non-
DILI cases): provides a more reliable assessment 
than accuracy.

• arithmetic mean of sensitivity (correctly identified DILI 
cases) and specificity (correctly identified non-DILI 
cases).

 

https://towardsdatascience.com/performance-metrics-for-binary-classifier-in-simple-words-be958535db49

https://medium.com/@ilyurek/roc-curve-and-auc-evaluating-model-performance-c2178008b02



Filtering: Dimension reduction using Differential Expression analysis

Challenge: Our data includes a massive number of genes (18,574). Analyzing them all is 
computationally complex and would lead to a poor model.
Feature Selection with LIMMA: popular R package for transcriptomic data. Widely used for the 
detection of differentially expressed genes between experimental conditions.
Identifying the Most Promising Genes: 
• Calculate a score (p-value) for each gene (contrast DILI1 vs DILI0).
• Low p-values: potential association with DILI.
• Kept the top 50 most significant genes for inclusion in the predictive model

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖(𝑘𝑘)𝑙𝑙~𝛽𝛽1 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙 + 𝛽𝛽2 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + (𝛽𝛽3 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘) + 𝛾𝛾1 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙 + ε
With 
• 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖(𝑘𝑘)𝑙𝑙: the expression level of a particular gene (i) in a sample (j) for the drug (l).
• 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙  (0 or 1): the DILI value for the l-th drug
• 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (0 to 1):  the normalized dose of the drug in the sample
• Optional - 𝐶𝐶𝑙𝑙𝑢𝑢𝑠𝑠𝑡𝑡𝑒𝑒𝑟𝑟: the cluster assigned to the drug (A, B or C)
• 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙: the l-th drug, random effect assumed normally distributed
• ε: error term



Accounting for Drug-Specific Effects with Random Effects
Challenge: Correlated observations
Doses from the same drug: naturally correlated → each drug has its 
own unique characteristics beyond the genes associated with DILI.
Random Effects: Capturing Drug Variability
• While random effects models are common in statistics, their 

application in bioinformatics seems less widespread
• Unlike fixed effects (focusing on individual drugs), random effects 

capture the overall influence of drug-to-drug variations: we're not 
interested in the specific effect of each individual drug

Why it Matters

• Most (if not all) ML algorithms assume that training samples are 
independent → often violated (repeated observations, longitudinal 
data). 

• Not modeling samples correlation can lead to mediocre 
performances or potential misleading inferences.

Drug 1 Drug 2 Drug 3



Model(s)

Correlated Data: Measurements from the same drug are correlated. Including 
drug as a fixed effect would treat each drug uniquely, making predictions for 
unseen drugs impossible → we will fit a mixed model with drug as a random 
effect.

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙~𝑓𝑓(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)) + 𝛾𝛾 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙

With: 
• 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙 (0 or 1): the DILI value of the l-th drug
• 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺: the expression values of the microarray probes
• 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (0 to 1): the normalized drug dose of each sample
• Optional - 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: the cluster assigned to a drug (A, B or C)
• 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙: the l-th drug, random effect assumed normally distributed



Tree-based ML algorithms with Random Effects

Combining Strengths: Tree-Based Models & Random Effects
General concept: replace the fixed effect part of a mixed model by a tree or RF while keeping the 
modeling of the dependence structure with random effects.
Emerging Landscape:
• Promising but limited (recent) publications and implementations (LongituRF, REEMtree, glmerTREE, 

MixRF, GPBoost,…).
• GPBoost (based on LightGBM, first release in 2020): the most advanced, but rudimentary interface 

and limited integration with popular packages (tidymodels, caret).
•  A Bayesian approaches (BiMM) show promise, but implementation released only last week...

𝑦𝑦 ~ 𝐹𝐹 𝑋𝑋 + 𝑍𝑍𝑍𝑍 + ε
With:
• F(X): trees based on the X “fixed” predictors (features)
• Zb: random effect(s)
• ε: error term



Potential ML Algorithms

Elastic Net (glmnet): powerful tool for regression analysis, particularly when dealing with high-dimensional 
data and to avoid overfitting.
• Reduce Overfitting & Identify Relevant Genes: Combine L1 (Lasso) &  L2 (Ridge) → Prevents the model 

to overfit to the training data.
• Interactions have to be specified (formula)
• Random effect

Tree-based methods:  
• Benefit of tree-based methods: don't need to explicitly define interactions between genes, as these 

methods can automatically capture them.
• Random forest (ranger): Combines multiple independent decision trees. Random effect.
• Gradient boosting machine (lightGBM): Employs a sequential ensemble of decision trees to improve 

accuracy. Random effect.
• Gradient boosting machine and mixed effects models (GPBoost):  lightGBM + random effect

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙~𝑓𝑓(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)) + 𝛾𝛾 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙



DILI Prediction: Limited Improvement with Clusters & Overfitting

• The predictive power of tested models/algorithms is limited

• Including cluster information (A/B/C) did not significantly improve the model's ability to predict DILI.

• GPBoost achieved the highest ROC AUC (with RF)

• Perfect predictions for Gpboost on the training data: drug-to-drug random effect explains the training data very well (no random 
effect estimated for the test data) => is there a common toxicity signal in the data ?

Cluster Method .metric Test Training
No Elastic Net bal_accuracy 0.49 0.71
No Random Forest bal_accuracy 0.52
No LightGBM bal_accuracy 0.52 0.82
No GPBoost bal_accuracy 0.50 1.00
No Elastic Net roc_auc 0.49 0.80
No Random Forest roc_auc 0.56
No LightGBM roc_auc 0.53 0.91
No GPBoost roc_auc 0.52 1.00
Yes Elastic Net bal_accuracy 0.51 0.73
Yes Random Forest bal_accuracy 0.53
Yes LightGBM bal_accuracy 0.52 0.96
Yes GPBoost bal_accuracy 0.50 1.00
Yes Elastic Net roc_auc 0.51 0.84
Yes Random Forest roc_auc 0.49
Yes LightGBM roc_auc 0.47 0.99
Yes GPBoost roc_auc 0.56 1.00



Pathway Analysis: Feature transformation leveraging biological knowledge

Limited Model Performance: Signal or Overfitting?

• Lack of a strong signal linking genes to DILI.

• Overfitting on irrelevant gene associations.

Overfitting Concerns: Current method using DE on 18,574 genes might 
capture spurious correlations.

Addressing Overfitting with Pathways:

Genes usually don't function independently, they operate in networks 
(pathways).

Modeling these pathways, instead of individual genes:

• Avoid overfitting on noise

• Add biological relevance!

IPA, MsigDB, AOP,… databases provide curated gene-pathway links.

Introducing: Feature transformation using Gene Set Enrichment Analysis

Gene

Gene
Gene

GeneGene

Gene



Gene Set Enrichment Analysis (GSEA)

GSEA analyzes groups of genes to identify biologically relevant processes or pathways associated with different 
conditions. 

Key Steps:

1.Rank the Genes:

1. Identify genes differentially expressed between conditions (drug treatment vs. control).

2. Rank these genes based on their expression changes (alternatively could be done on ranked signed p-value).

2.Enrichment Score:

1. GSEA calculates a score (NES) for each pathway.

2. NES reflects how enriched the pathway is at the top/bottom of the ranked gene list.

3.Interpretation:

1. Positive NES suggests the pathway is up-regulated.

2. Negative NES suggests the pathway is down-regulated.



Gene-Clustering using GSEA: slight improvement
Second approach: we reduced our 18,574 genes features to 68 pathways enrichment scores features 
using Gene Set Enrichment Analysis (GSEA) based on the AOP (Adverse Outcome Pathway) pathways.

Similar conclusion as feature reduction using differential expression BUT highest AUC score observed so 
far!

Cluster Method .metric Test Training
No Elastic Net bal_accuracy 0.50 0.64
No Random Forest bal_accuracy 0.52 0.99
No LightGBM bal_accuracy 0.51 0.85
No GPBoost bal_accuracy 0.50 1.00
No Elastic Net roc_auc 0.49 0.72
No Random Forest roc_auc 0.52 1.00
No LightGBM roc_auc 0.52 0.93
No GPBoost roc_auc 0.53 1.00
Yes Elastic Net bal_accuracy 0.52 0.66
Yes Random Forest bal_accuracy 0.56 0.99
Yes LightGBM bal_accuracy 0.54 0.88
Yes GPBoost bal_accuracy 0.50 1.00
Yes Elastic Net roc_auc 0.50 0.74
Yes Random Forest roc_auc 0.55 1.00
Yes LightGBM roc_auc 0.59 0.96
Yes GPBoost roc_auc 0.53 1.00



Conclusion and Discussion
Model Predictive Performance:
• Clustering information did not significantly improve the models
• Our models achieved comparable (low) performance to previous studies (Chierici et al., 

2020)

Limitations of the Current Approach:
• Limited signal in the data: Transcriptomic data might not explain DILI toxicity alone
• Patient Specificity: Using data from a single donor population limits generalizability. DILI 

events can be rare.
• DILI Annotation Variability: Inconsistencies in DILI labelling across datasets (drug labels vs. 

literature) can introduce noise 

Future Directions in the general use of ML:
• Random Effects: Promising potential, still require further development for user-friendly 

tools and broader adoption
• Exploring Pathway Enrichment: Leveraging pathway knowledge for feature 

“transformation” is promising. Further exploration in this direction is needed.
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