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experience and expertise in making decisions related thereto as the presentation may 
contain certain marketing statements and does not constitute legal advice. 
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Design Space Identification in QbD approach

Quality by Design (QbD) vs. Quality by Testing (QbT)
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Design Space - 2 factors example

Experimental space/experimental domain

Design space (here P(success)>80%)

Maximum operating range

An easy to report “hyper-rectangle”

Normal operating range

Set Point
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Background 
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Motivation: Sampling Posterior

Source: Speagle, Joshua S. (2021)
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Motivation: Sampling Posterior

Source: Speagle, Joshua S. (2021)



MCMC

• Single “walker”

• Explores posterior

• Fast, if proposal matrix is tuned

1
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Comparison of Nested Sampling vs. MCMC Sampling

Nested Sampling

• Ensemble of “live points”

• Scans from prior to peak of likelihood

• Might be slower, no tuning required

Source: Handley, Will (2023)



Advantages and disadvantages of Nested Sampling

• Does not need gradients

• Ensemble sampler

• Multimodal exploration

• Can characterize complex uncertainties in real-time

• Can allocate samples much more efficiently in some cases

• Very parallelizable

• Possesses well-motivated stopping criteria (Skilling 2006; 

Speagle 2020)

• Can help perform model selection

1
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Advantages Disadvantages

• Can not use gradients as “naturally” as HMC.

• Implementations require a prior transform.

• Slow (but steady) and runtime sensitive to size of 

prior.

• Sampling is more involved.

The main goal of using gradients is to improve dimensionality scaling / reliability
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Examples on Statistical 

Inference

𝑌𝑖 = 𝛼 − 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3
−𝛽4𝑋1𝑋3+𝛽5𝑋2𝑋2 + 𝜀𝑖

Computation Duration with dynesty <2.5min

Computation Duration with PyMC3 <9min

Nested Sampling



For a simple case study with two design 

variables, d := (d1; d2) and a single CQA, 

s.

𝑠 = 𝜃𝑑1
2 + 𝑑2

with the model parameter 𝜃. The goal is 

to characterize the probabilistic DS inside 

the knowledge space K := [-1; 1]2

imposed by the following CQA limits:

0.2 ≤ 𝑠 ≤ 0.75
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Example on Design 

Space Computation

Source: Kusumo, et al (2019)



To summarize, Nested Sampling is an attractive algorithm framework for Bayesian inference and design 

space computation because 

• it explores the parameter space globally, 

• it handles multi-modal distributions and phase transitions well, 

• it initializes and terminates at a well-defined point without cumbersome supervision, and 

• it leverages efficient strategies from Bayesian parameter estimation for generating replacement 

proposals during the DS characterization.

• it is effective for larger DS characterization with a handful of process parameters, in the presence of a 

complex dynamic model and realistic model uncertainty.

• it can even be competitive of MCMC with optimization methods relying on process flexibility concepts, 

even in low-dimensional DS characterization problems
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Conclusions



• High Dimensional experiments:

• Advanced kinetic models based on ordinary differential equations

• Multimodal and mixture models

1
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Further Studies
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Thank you!

Jean-François Michiels

Associate Director

Cencora PharmaLex

Data Strategy & Quantitative Sciences

Deniz Akinc

Senior Manager

Cencora PharmaLex

Data Strategy & Quantitative Sciences
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